您现在的位置是: 首页 > 专业报考 专业报考

三余弦定理高考例题_三余弦定理高考能用吗

tamoadmin 2024-05-16 人已围观

简介1.天津高考文科数学都考哪些知识点阿?高考的数学考点有:1、数列&解三角形数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。解

1.天津高考文科数学都考哪些知识点阿?

三余弦定理高考例题_三余弦定理高考能用吗

高考的数学考点有:

1、数列&解三角形

数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2、立体几何

高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3、概率

高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4、解析几何

高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5、导数

高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

天津高考文科数学都考哪些知识点阿?

1.高三年级数学知识点归纳笔记 篇一

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

 2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

 3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

 4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

 5.平面向量:初等运算、坐标运算、数量积及其应用

 6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

 7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

 8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

 9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

 10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

 11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

 12.导数:导数的概念、求导、导数的应用

 13.复数:复数的概念与运算

2.高三年级数学知识点归纳笔记 篇二

1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

 2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

 3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

 4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

3.高三年级数学知识点归纳笔记 篇三

反三角函数:

 y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;

 y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;

 y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

 sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

 其他公式:

 三角函数其他公式

 arcsin(-x)=-arcsinx

 arccos(-x)=π-arccosx

 arctan(-x)=-arctanx

 arccot(-x)=π-arccotx

 arcsinx+arccosx=π/2=arctanx+arccotx

 sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

 当x∈[—π/2,π/2]时,有arcsin(sinx)=x

 当x∈[0,π],arccos(cosx)=x

 x∈(—π/2,π/2),arctan(tanx)=x

 x∈(0,π),arccot(cotx)=x

 x〉0,arctanx=π/2-arctan1/x,arccotx

4.高三年级数学知识点归纳笔记 篇四

一、充分条件和必要条件

 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

 二、充分条件、必要条件的常用判断法

 1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

 3.集合法

 在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

 若A?B,则p是q的充分条件。

 若A?B,则p是q的必要条件。

 若A=B,则p是q的充要条件。

 若A?B,且B?A,则p是q的既不充分也不必要条件。

 三、知识扩展

 1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

 (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

 (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

 (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

5.高三年级数学知识点归纳笔记 篇五

直线、平面、简单多面体

 1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

 2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.

 3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

 4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

 如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

 如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.

 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体

 6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

 正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.

 7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

6.高三年级数学知识点归纳笔记 篇六

直线和圆

 1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式(为直线的方向向量).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况

 2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点

 直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.

 在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

 3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

 4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、解.

 5.圆的方程:最简方程;标准方程;

 6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

 如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.

 如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离).

 7.曲线与的交点坐标方程组的解;

 过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

第一章 平面向量

基础知识

1.向量

2.向量的加法与减法

3.平面向量的表示方法

4.平面向量的坐标运算

5.实数与向量的积

6.平面向量的数量积

7.向量与实数

8.向量的性质

9.向量的夹角公式及应用

10.平面向量的基本定理

11.线段的定比分点

12.平面两点间的距离

13.平移

14.基础习题

高考试题分类

1.向量的线性运算

2.向量的数乘运算

3.向量的位置关系

4.向量的几何运算

5.有向线段与分比

6.比例综合计算

综合性高考试题

1.向量平衡性质的应用

2.向量的三角综合运算

第二章 集合与简易逻辑

基础知识

1.集合

2.子集和真子集

3.补集

4.交集

5.并集

6.韦恩图与摩根律

7.四种命题

8.逻辑联结词

9.常见数学逻辑符号

10.充分条件和必要条件

11.基础习题

高考试题分类

1.逻辑符号表达

2.集合性质的应用

3.集合定义问题

4.集合相等的判断

5.集合图形法的应用

6.两两相交的多个集合的并集的求法

7.命题与逆否命题

8.充要条件

综合性高考试题

1.集合的比较

2.集合与排列组合

第三章 函数

基础知识

1..映射和一一映射

2.坐标系和象限

3.函数和反函数

4..函数的单调性和奇偶性

5.函数的对称

6.函数的自身对称

7.定义域与值域

8.函数平移和坐标系平移

9.指数和对数

10.幂函数、指数函数和对数函数

11.一元二次函数的性质

12.基础习题

高考试题分类

1.函数的定义域与值域

2.函数图像的应用

3.函数与反函数的变换

4.函数对称的应用

5.函数平移和坐标系平移的应用

6.分角和倍角的象限

7.函数单调性和奇偶性的综合应用

8.幂函数、指数函数和对数函数的性质及图像

9.复合函数

10.一元二次方程与韦达定理的应用

11.分段函数的单调性

综合性高考试题

1.函数对称的延伸

2.函数与定点

3.函数的综合应用

4.信息定义

第四章 不等式

基础知识

1.不等式的基础

2.不等式的基本性质

3.不等式的证明

4.几个重要公式

5.不等式的解法

6.含绝对值的不等式

7..绝对值不等式的解法

8.二元一次不等式与不等式区域

9.曲线的不等式区域

10.基础习题

高考试题分类

1.不等式公式的应用

2.几类不等式的最值求法

3.反证法和数学归纳法

4.不等式区域的应用

5.不等式方程的求解

6.分段函数不等式的求解

7.不等式与一元二次方程

8不等式方程和函数的综合

9.绝对值方程与绝对值不等式的应用

10.不等式应用

综合性高考试题

1.几类不等式的证明思想

2.数学归纳法思路

3.不等式的综合应用

4.一元二次方程的综合分析

第五章 三角函数

基础知识

1.角的度数和弧度制

2.三角形的基本特征

3.三角形的正弦定理和余弦定理

4..三角函数

5.三角函数与象限

6.两角和与差的正弦、余弦、正切

7..二倍角的正弦、余弦、正切

8.正弦函数、余弦函数图像的性质

9.正切函数图像的性质

10.五点法画正、余弦函数

11.反三角函数

12.斜三角形解法

13.三角函数基本公式

14..三角函数补充公式

15.基础习题

高考试题分类

1.三角函数的象限

2.三角函数性质和图像

3.三角函数的周期性和单调性

4.三角函数的化简求解

5.三角函数与向量

6.三角形与正、余弦定理

7.三角函数的极值求解

8.斜三角形的求解

综合性高考试题

1.绝对值与三角函数

2.三角函数的综合求解

3.构造法与三角函数求解

4.三角函数最值的求法

5.三角形的综合解法

6.斜三角形的综合应用

第六章 数列

基础知识

1.数列

2.等差数列

3.等差数列的典型性质

4.等比数列

5.等差数列的典型性质

6.倒数数列

7.几种典型的Sn→an递推关系式

8.几种典型的an+1→an递推关系式

9.几种典型的an→n递推关系式

10.几种典型的数列之和或积的形式

11.几种典型的Sn+1→Sn递推关系式

12.基础习题

高考试题分类

1.等差数列的基本应用

2.等差数列的综合应用

3.等比数列的基本应用

4.等比数列的综合应用

5.倒数数列的求解

6.数列与方程

7.算法与数列

综合性高考试题

1.等差等比数列的综合应用

2.错位相消法的应用

3.复杂定义的数列分析

4.数列和不等式的综合应用

5.几类复杂的数列递推式

第七章 直线和圆的方程

基础知识

1.点与点的距离

2.斜率和直线方程

3.直线关系和斜率

4.点到直线的距离

5.直线与曲线的关系

6.曲线与方程

7.点与曲线的关系

8.点与面的关系

9.简单的线性规划问题

10.圆的基本性质

11.圆的典型特征

12.圆的典型问题

13.四点共圆的条件

14.基础习题

高考试题分类

1.直线方程的应用

2.点线距离的应用

3.直线关系的简单应用

4.圆的性质应用及参数方程

5.直线与圆的关系的应用

6.圆内截弦的性质应用

7.圆和直线相关证明题

综合性高考试题

1.圆的综合应用

2.圆过定点问题

3.圆的极值问题

第八章 圆锥曲线方程

基础知识

1.椭圆的标准方程

2.椭圆的几何性质

3.椭圆的参数方程

4.椭圆的典型特征

5.椭圆的物理性质

6.双曲线的标准方程

7.双曲线的几何性质

8.双曲线的物理性质

9.抛物线的标准方程

10.抛物线的几何性质

11.抛物线的物理性质

12.抛物线的典型特征

高考试题分类垒

1.椭圆的性质应用

2.双曲线的性质应用

3.抛物线的性质应用

4.圆锥曲线与三角形的综合

5.圆锥曲线与圆的综合

6.圆锥曲线与直线方程

7.三种圆锥曲线的关联问题

综合性高考试题

1.椭圆的综合应用

2.双曲线的综合应用

3.抛物线的综合应用

4.圆锥曲线的极值求解

5.圆锥曲线的综合求解

第九章 直线与平面

基础知识

1.平面的基本性质

2.平面图形直观图的画法

3.平行直线

4.异面直线

5.直线与平面

6.三垂线定理及其逆定理

7.两个平面的位置关系

8.线面关系中的反证法应用

9.二面角及其平面角

10.空间向量

11.空间向量的夹角公式

12.直线的方向向量

13.平面的法向量

14.空间向量的应用

高考试题分类

1.空间上直线与直线的关系

2.直线与平面性质的应用

3.直线与平面的关系计算

4.空间上三角形与平面的关系

5.二面角的性质

6.空间向量的性质

综合性高考试题

1.线面夹角的综合应用

2.二面角的综合应用

3.空间向量的综合应用

第十章 简单几何体

基础知识

1.多边形的特征;

2.多面体、凸多面体和正多面体

3.棱柱

4.棱锥

5.球体的性质

6.正四面体与正方体

7.投影与视图

8.基础习题

高考试题分类

1.多面体的性质和拆分

2.多面体的截面形状

3.多面体上的共面问题

4.棱锥和棱柱的求解

5.正方体与正四面体

6.球体的基本性质

7.球的内接多面体和外切多面体

8.正三角形与圆、正四面体与球

9.视图与投影的应用

10.多面体的几何证明

综合性高考试题

1.多面体上线面夹角的综合应用

第十一章 排列、组合、二项式定理

基础知识

1.分类计数原理与分步计数原理

2.排列与排列数公式

3.组合与组合数公式

4.组合数的两个性质

5.二项式定理

6.排列组合的题型和原则

高考试题分类

1.排列组合的基本性质

2.排列组合中的对等问题

3.排列组合中的不对等问题

4.特殊优先原则的应用

5.排列组合反向思维的应用

6.相邻的排列组合问题

7.树图法在排列组合中的应用

8.二项式展开式的应用

9.幂指数的求解

10.简单几何问题的排列组合

综合性高考试题

1.二项式中的若干等式

2.总和限定的组合方式

第十二章 概率与统计

基础知识

1.随机事件与概率

2.独立事件与互斥事件

3.相互独立事件同时发生的概率

4.概率计算中完备性、纯粹性和平等性

5.离散型随机变量

6.抽样

7.方差与标准差

8.基础习题

高考试题分类

1.均值和方差的应用

2.总体抽样和分层抽样

3.概率和数学期望的基本应用

4.概率应用的反向思考

5.标准公式Pn(k)=Cn^kP^k(1-P)^(k)的应用

6.统计应用

综合性高考试题

1.概率的综合应用

2.由对立事件发生概率求事件发生概率

3.方案比较

第十三章 导数

基础知识

1.导数的概念

2.两个函数的和、差、积、商和导数

3.基本导数公式

4.导数的应用

5.导数与极值

高考试题分类

1.导函数、曲线的斜率和切线方程

2.导数与函数单调性

3.导数与极值的应用

综合性高考试题

1.导数的综合求解

2.导数法比较函数

3.导数的实际应用

第十四章 复数

基础知识

1.复数的概念

2.复数的加法和减法

3.复数的乘法和除法

4.基础习题

高考试题分类

1.复数的性质

2.复数的基本运算

综合性高考试题

1.复数运算技巧

第十五章 高考中智力趣味问题

试题分类

1.比较题

2.进制分析

3.概念剖析

解法归纳

1.折中法

2.特值法

3.系数之和的综合求解

高考试题综合思路

1.反向思维

2.灵活思想

3.规则应用思想

4.观察思想

5.拆分思想

6.对比思想

附录 课改选修内容

1.极坐标系

2.参数方程

3.几何证明

4.线性回归方程

文章标签: # 应用 # 直线 # 不等式