您现在的位置是: 首页 > 专业报考 专业报考
高考导数类型_高考导数的分类
tamoadmin 2024-06-18 人已围观
简介1.导数在高考中怎么考?2.高考数学导数解题技巧及方法3.数学高考 用导数求单调性 分类讨论 如何才可以把一个函数知道他导函数那一部分大于0 那一部分小于0 根据什4.谁来讲讲导数是什么,怎么用,计算,公式5.导数要掌握什么呢不知道你是参加哪个省市的高考。拿北京市为例,一半高考导数放在倒数第三题的位置,分值大约在13分左右如果想要考取好一点的大学,导数这道题必须要拿全分。所以导数的题不会太难。特别
1.导数在高考中怎么考?
2.高考数学导数解题技巧及方法
3.数学高考 用导数求单调性 分类讨论 如何才可以把一个函数知道他导函数那一部分大于0 那一部分小于0 根据什
4.谁来讲讲导数是什么,怎么用,计算,公式
5.导数要掌握什么呢
不知道你是参加哪个省市的高考。
拿北京市为例,一半高考导数放在倒数第三题的位置,分值大约在13分左右
如果想要考取好一点的大学,导数这道题必须要拿全分。
所以导数的题不会太难。
特别注意lnx,a^x,loga
x这种求导会就可以了。
首先,考试时候的导数问题中,求导后多为分式形式,分母一般会恒>0,分子一般会是二次函数
正常的话,这个二次函数是个二次项系数含参的函数。
之后则可以开始分类讨论了。
分类讨论点1:讨论二次项系数是否等于0
当然如果出题人很善良也许正好就不存在了
这里也要适当参考第一问的答案,出题人会引导你的思维
分类讨论点2:讨论△
例如开口向上,△<=0则在该区间上单调递增
分类讨论点3:如果△>0,那么可以考虑因式分解
正常情况没有人会让你用求根公式。。考这个没意义。
注意分类讨论点2和3的综合应用,而且画画图吧,穿针引线(注意负号)或者直接画原函数图像都行,这样错的概率会低一些
导数的题要注意计算,例如根为1/(a+1)和1/(a-1)这种,讨论a在(0,1)上和a在(1,+无穷)上,两根大小问题,很多人都会错恩。
导数在高考中怎么考?
一般情况下,f12不等于f21,但是若函数的二阶偏导数连续,则f12等于f21,条件是连续的二阶偏导数才可以。
函数有二阶连续偏导数,本身必连续,则满足 f12 = f21。二阶偏导数连续的时候f12等于f21。对于f(u,v)来讲,f是二元函数,二阶偏导数:f11(uu),f12(uv),f21(vu),f22(vv)。其中f12和f21相同。一般不会,具体看评分标准。
x方向的偏导
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。
高考数学导数解题技巧及方法
导数在高考中一般是出两道题,一道中等偏上的选择或填空;一道是解答题,难度比较难,在12分。很多同学都不知道该怎么做这类题型,主要是因为分类讨论的时候,不知该以什么标准来分类,所以导致错误百出。今天我来告诉大家怎么来做这类题目哈!
数学高考 用导数求单调性 分类讨论 如何才可以把一个函数知道他导函数那一部分大于0 那一部分小于0 根据什
数学是许多人难以攻克的短板,你的数学学得如何?千万不要焦虑,下面就是我给大家带来的,希望大家喜欢!
高考数学导数解题技巧
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。
5.涌现了一些函数新题型。
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。
7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。
8.求极值, 函数单调性,应用题,与三角函数或向量结合。
高考数学导数中档题是拿分点
1.单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2.极值问题
求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在 _ 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。
还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。
3.切线问题
曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展 理性思维 。关于切线方程问题有下列几点要注意:
(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;
(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;
(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。
4.函数零点问题
函数的零点即曲线与x轴的交点,零点的个数常常与函数的单调性与极值有关,解题时要用图像帮助思考,研究函数的极值点相对于x轴的位置,和函数的单调性。
5.不等式的证明问题
证明不等式f(x)≥g(x)在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值等于零;而证明不等式f(x)>g(x) 在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值大于零,或者证明f(x)min≥g(x)max、 f(x)min>g(x)max。因此不等式的证明问题可以转化为用导数求函数的极值或最大(小)值问题。
高考数学解题思想 方法
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
技巧一:提前进入“角色”
高考前一个晚上要睡足八个小时,早晨最好吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、、准考证等,提前半小时到达高考考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动。回忆一下高考数学常用公式,有助于高考数学超常发挥。
技巧二:情绪要自控
最易导致高考心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种
①转移注意法:
把注意力转移到对你感兴趣的事情上或滑稽事情的回忆中。
②自我安慰法:
如“我经过的考试多了,没什么了不起”等。
③抑制思维法:
闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到高考发卷时。
技巧三:摸透“题情”
刚拿到高考数学试卷,不要匆匆作答,可先从头到尾通览全卷,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施 ,也从根本上防止了“漏做题”,从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。
技巧四:信心要充足,暗示靠自己
高考数学答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。
技巧五:数学答题有先有后
1、高考答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。
2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分”,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。
以上是我 总结 的几条高考数学考试超常发挥的技巧,希望这几点建议可以在高考中帮到同学们,祝同学们高考取得好成绩。
高考数学导数解题技巧及方法相关 文章 :
★ 高中数学导数难题怎么解题
★ 高考数学答题技巧
★ 高考数学导数及其应用知识点
★ 高考数学各题型答题技巧及解题思路
★ 高考数学的核心考点及答题技巧方法
★ 2020高考数学答题技巧及方法
★ 高考数学答题技巧大全
★ 高考数学易错点整理及解题的方法技巧
★ 高考数学最易混淆知识点及大题解题方法
谁来讲讲导数是什么,怎么用,计算,公式
先求出函数的导数fˇ(x)
再解方程fˇ(x)>0 就知道函数那一部分大于0?了(那一部分小于0也是这样)需要注意的是函数的定义域例如:fˇ(x)=(e^x-1)*(x+1)
令fˇ(x)>=0解得?x<-1x>0(可以相等因为在-1?,0?时x有定义域) 令fˇ(x)<=0解得?-1<=x<=0?具体解答如下:
先令fˇ(x)=0?解得?x=-1?x=0?(?e^x-1=0?得到x=0?x+1=o?得到x=-1?) 再作出下图: 在x轴上方表示为x>0在x轴下方表示为x<0特别注意的是x的系数?如果系数为负?则上面表示相反!!!?还有的是注意函数的定义域!!!
导数要掌握什么呢
导数是表示函数瞬时变化率的式子。求导有定义法,y'= lim f(x+Δx)—f(Δx)
————————(分数线)
(Δx∞→) Δx
也有公式,比如常数的导数是0,y=x^n(x的n次方) , y'=nx^(n-1)。y=a^x (a的x次方) , y'=a^x 乘lna。y=e^x(e的x次方,e为常数,≈2.718281828) , y'=e^x。y=sinx, y'=cosx。y=cosx, y'=-sinx。
导数可以用来求函数极值,有时候最值也可以求。还能判断函数增减性。导数为正函数为增,导数为负函数递减。
总之说是这么说,实际应用起来千变万化,要随机应变。建议你去买本人教版数学选修1-1,最后一章就是讲导数的。高考数学最后一大题一般也是导数(有时是解析几何),可见确实有难度。慢慢学吧。
“简单”又“详细”,你的要求似乎比较难满足。
举个例子的话,请求y=2x^2-3x-5的单调递减区间。二次函数你可能去求对称轴,然后根据二次项系数判断增减性。用导数的话,求导,y'=4x-3,导数小于零,则x∈(-∞,3/4)。所以该区间为函数减区间。
当然这个非常基础。导数也有难题,譬如你可以看看这个,也是我做的。 了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率
等);
2 掌握函数在一点处的导数的定义和导数的几何意义;
3 理解导函数的概念 熟记基本导数公式;
4 掌握两个函数和、差、积、商的求导法则
5 了解复合函数的求导法则 会求某些简单函数的导数
6 理解可导函数的单调性与其导数的关系;
7 了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异
号);
8 会求一些实际问题(一般指单峰函数)的最大值和最小值