您现在的位置是: 首页 > 专业报考 专业报考

浙江高考平面向量_浙江高考平面向量题目及答案

tamoadmin 2024-05-22 人已围观

简介2022浙江高考数学难。今年数学题有几个特点:一是数学题目越来越灵活。我们知道,高考数学一直要求较强的逻辑思维能力,而最近几年高考的着重点也有所改变,题目越来越生活化。考生反馈,今年数学题目也是如此,考死公式和定理的时代看来已经过去了。二是压轴题还是非常难。高考数学最大的看点,就是压轴题,因为一般就是靠它来拉开分差。很多考生在进考场的时候,就做好了心理准备,有放弃的想法。有的考生能完成部分解题环节

浙江高考平面向量_浙江高考平面向量题目及答案

2022浙江高考数学难。

今年数学题有几个特点:

一是数学题目越来越灵活。我们知道,高考数学一直要求较强的逻辑思维能力,而最近几年高考的着重点也有所改变,题目越来越生活化。考生反馈,今年数学题目也是如此,考死公式和定理的时代看来已经过去了。

二是压轴题还是非常难。高考数学最大的看点,就是压轴题,因为一般就是靠它来拉开分差。很多考生在进考场的时候,就做好了心理准备,有放弃的想法。

有的考生能完成部分解题环节,就感觉很幸运了。今年的高考数学题,考生反馈说,自己只是解答了部分,还有人说完全没动笔,没有思路。看来今年高考数学题又难倒了一片。

应对策略

1、拓实基础,强化通性通法

高考对基础知识的考查既全面又突出重点。抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。

2、认真阅读考试说明,减少无用功

在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。

3、抓住重点内容,注重能力培养

高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。

关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。

2009年浙江高考文科数学试题和答案

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设 , , ,则 ( )

A. B. C. D.

1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.

解析 对于 ,因此 .

2.“ ”是“ ”的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.

解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.

3.设 ( 是虚数单位),则 ( )

A. B. C. D.

3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.

解析对于

4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )

A.若 ,则 B.若 ,则

C.若 ,则 D.若 ,则

4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.

解析对于A、B、D均可能出现 ,而对于C是正确的.

5.已知向量 , .若向量 满足 , ,则 ( )

A. B. C. D.

5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.

解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有

6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )

A. B. C. D.

6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.

解析对于椭圆,因为 ,则

7.某程序框图如图所示,该程序运行后输出的 的值是( )

A. B.

C. D.

7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.

解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .

8.若函数 ,则下列结论正确的是( )

A. , 在 上是增函数

B. , 在 上是减函数

C. , 是偶函数

D. , 是奇函数

8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.

解析对于 时有 是一个偶函数

9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )

A. B. C. D.

9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动

解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.

10.已知 是实数,则函数 的图象不可能是( )

10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.

解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .

非选择题部分(共100分)

注意事项:

1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题共7小题,每小题4分,共28分。

11.设等比数列 的公比 ,前 项和为 ,则 .

11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.

解析对于

12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .

12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.

解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18

13.若实数 满足不等式组 则 的最小值是 .

13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求

解析通过画出其线性规划,可知直线 过点 时,

14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .

14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力

解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30

15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表 低谷时间段用电价格表

高峰月用电量

(单位:千瓦时) 高峰电价

(单位:元/千瓦时) 低谷月用电量

(单位:千瓦时) 低谷电价

(单位:元/千瓦时)

50及以下的部分 0.568 50及以下的部分 0.288

超过50至200的部分 0.598 超过50至200的部分 0.318

超过200的部分 0.668 超过200的部分 0.388

若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,

则按这种计费方式该家庭本月应付的电费为 元(用数字作答).

15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用

解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为

16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.

16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力

解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.

17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .

从这 张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到

标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,

则 .

17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平

解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本事件有20种,因此

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,

. (I)求 的面积; (II)若 ,求 的值.

18.解析:(Ⅰ)

又 , ,而 ,所以 ,所以 的面积为:

(Ⅱ)由(Ⅰ)知 ,而 ,所以

所以

19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.

19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD

(Ⅱ)在 中, ,所以

而DC 平面ABC, ,所以 平面ABC

而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE

由(Ⅰ)知四边形DCQP是平行四边形,所以

所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,

所以直线AD与平面ABE所成角是

在 中, ,

所以

20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.

(I) 求 及 ;

(II)若对于任意的 , , , 成等比数列,求 的值.

20、解析:(Ⅰ)当 ,

( )

经验, ( )式成立,

(Ⅱ) 成等比数列, ,

即 ,整理得: ,

对任意的 成立,

21.(本题满分15分)已知函数 .

(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;

(II)若函数 在区间 上不单调,求 的取值范围.

解析:(Ⅰ)由题意得

又 ,解得 , 或

(Ⅱ)函数 在区间 不单调,等价于

导函数 在 既能取到大于0的实数,又能取到小于0的实数

即函数 在 上存在零点,根据零点存在定理,有

, 即:

整理得: ,解得

22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .

(I)求 与 的值;

(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.

22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义

点 到焦点的距离等于它到准线的距离,即 ,解得

抛物线方程为: ,将 代入抛物线方程,解得

(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。

则 ,当 则 。

联立方程 ,整理得:

即: ,解得 或

,而 , 直线 斜率为

,联立方程

整理得: ,即:

,解得: ,或

而抛物线在点N处切线斜率:

MN是抛物线的切线, , 整理得

,解得 (舍去),或 ,

文章标签: # 考查 # 平面 # 对于