您现在的位置是: 首页 > 录取信息 录取信息
数学高考题试卷分析,数学高考题试卷
tamoadmin 2024-07-17 人已围观
简介1.2010年浙江省高考试题:理科数学试卷填空题16题怎么解啊2.求近几年数学高考试卷(带答案,最好是湖北省的)3.2005江西高考数学题及答案4.湖南数学高考试卷2023难度5.2006年上海数学高考题6.2018年浙江高考数学试卷试题及答案解析(答案WORD版)7.2022高考数学试卷(2022高考数学试卷全国甲卷)2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+
1.2010年浙江省高考试题:理科数学试卷填空题16题怎么解啊
2.求近几年数学高考试卷(带答案,最好是湖北省的)
3.2005江西高考数学题及答案
4.湖南数学高考试卷2023难度
5.2006年上海数学高考题
6.2018年浙江高考数学试卷试题及答案解析(答案WORD版)
7.2022高考数学试卷(2022高考数学试卷全国甲卷)
2010年江苏高考数学试题
一、填空题
1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________
2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________
3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__
4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
5、设函数f(x)=x(ex+ae-x),x∈R,是偶函数,则实数a=_______▲_________
6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______
7、右图是一个算法的流程图,则输出S的值是______▲_______
8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____
10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____
11、已知函数 ,则满足不等式 的x的范围是____▲____
12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____
13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲
14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______
二、解答题
15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长
(2)设实数t满足( )? =0,求t的值
16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900
(1)求证:PC⊥BC
(2)求点A到平面PBC的距离
17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值
(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大
18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0,
①设动点P满足 ,求点P的轨迹
②设 ,求点T的坐标
③设 ,求证:直线MN必过x轴上的一定点
(其坐标与m无关)
19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列.
①求数列 的通项公式(用 表示)
②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为
20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 .
(1)设函数 ,其中 为实数
①求证:函数 具有性质
②求函数 的单调区间
(2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围
理科附加题
21(从以下四个题中任选两个作答,每题10分)
(1)几何证明选讲
AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC
(2)矩阵与变换
在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值
(3)参数方程与极坐标
在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值
(4)不等式证明选讲
已知实数a,b≥0,求证:
22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立
(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列
(2)求生产4件甲产品所获得的利润不少于10万元的概率
23、(10分)已知△ABC的三边长为有理数
(1)求证cosA是有理数
(2)对任意正整数n,求证cosnA也是有理数
2010年浙江省高考试题:理科数学试卷填空题16题怎么解啊
如果问我数学最后一题有多难,我要能答上我就是省状元。
虽然我说的是玩笑话,但并不是没有道理的。每年的高考,都会有两个拉开距离的重要环节。语文的作文拉开普通段子手和灵魂段子手的距离。数学的最后一道大题拉开普通生和尖子生的距离。
到底有多难?来让我们看一眼。
有过高考经历的都知道,要在高考数学的最后一题得分,不难;满分,巨难。因为老师说过,只要你能做条线或者写一个相关的公式就给你分。倒是想要精益求精拿个满分,大概只有天才才能做到吧。毕竟通常来说最后一题就是压轴题了,是专家们“故意”用来区分你和天才的。
让我们回顾历史最难数学压轴题。史上最难高考试卷—理科数学。那一年,全国平均分26分;那一年,北京平均分17分;那一年,安徽平均分28分。为84年的考生鞠一个躬,同志们你们辛苦了。
让我们重温这份经典试卷,全国得分率21.7%的“史上最难”。
是不是看了之后,90后非常感谢父母把我们生在90年代,让我们高考在10年代。其实,我们也不用幸灾乐祸。10年代的压轴题也类似老太太的裹脚布——又臭又长。
这是一次写没有三角形的三角函数大题的体验。这也是一次写立体几何的时候居然不认识字的感受。更是一次写要用线性规划的分布列的题的憋屈。看到用椭圆规求椭圆方程的题,我想掀桌,大吼一声:出题老师,我永远忘不了你,我感谢你八辈祖宗。想哭!想哭!想哭!
怎么应对数学压轴题
在高考数学中。最后一题,光是长度都令人生畏。但是你要知道高考是知识与心理的双重测验。会做一道题;会做一道难题;明知是难题,在高度集中一个小时后,还能顶住压力做出来。这完全是三种不同的境界,做到第一种境界,你就不平凡啦!达到第二种境界,恭喜你你已经可以升仙啦!完成第三种境界,膜拜你,你就是考神。
像我们这样的学渣,在最后一道数学题面前,除了留下一个“解”字,也别无他法。但是我们只要做到能发挥好自己的应有的水平就行。毕竟能正常发挥就已经很不容易了。
不过我还是在这里,祝各位考生都是超常发挥!考上自己心仪的大学!
求近几年数学高考试卷(带答案,最好是湖北省的)
考点:平面向量数量积的运算.专题:计算题.分析:画出满足条件的图形,分别用
AB
、
AC
表示向量
α
与
β
,由
α
与
β
-
α
的夹角为120°,易得B=60°,再于|
β
|=1,利用正弦定理,易得|
α
|的取值范围.解答:解:令用 AB = α 、 AC = β ,如下图所示:
则由 BC = β - α ,
又∵ α 与 β - α 的夹角为120°,
∴∠ABC=60°
又由AC=| β |=1
由正弦定理| α | sinC =| β | sin60° 得:
| α |=2 3 3 sinC≤2 3 3
∴| α |∈(0,2 3 3 ]
故| α |的取值范围是(0,2 3 3 ]
故答案:(0,2 3 3 ]点评:本题主要考查了平面向量的四则运算及其几何意义,突出考查了对问题的转化能力和数形结合的能力,属中档题
2005江西高考数学题及答案
2010年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 为虚数单位,则=
A.- B.-1 C. D.1
2.已知,则=
A. B. C. D.
3.已知函数,若,则x的取值范围为
A. B.
C. D.
4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则
A. n=0 B. n=1 C. n=2 D. n 3
试卷类型:A
5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=
A.0.6 B.0.4 C.0.3 D.0.2
6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=
A.2 B. C. D.
7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为
A.0.960 B.0.864 C.0.720 D.0.576
8.已知向量a=(x+z,3),b=(2,y-z),且a⊥?b.若x,y满足不等式,则z的取值范围为
A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]
9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.即不充分也不必要的条件
10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=
A.5太贝克 B.75In2太贝克
C.150In2太贝克 D.150太贝克
二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。
11. 的展开式中含的项的系数为
12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)
13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。
试卷类型A
14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;
(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:
由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分10分)
设的内角所对的边分别为,已知
(Ⅰ)求的周长
(Ⅱ)求的值
17. (本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)
18. (本小题满分12分)
如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当=1时,求证:⊥;
(Ⅱ)设二面角的大小为,求的最小值.
19.(本小题满分13分)
已知数列的前项和为,且满足:, N*,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.
20. (本小题满分14分)
平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
21.(本小题满分14分)
(Ⅰ)已知函数,,求函数的最大值;
(Ⅱ)设…,均为正数,证明:
(1)若……,则…;
(2)若…=1,则……。
湖南数学高考试卷2023难度
2005年江西高考数学试卷(理科)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 则
(A) (B) (C) (D)
2.设复数 若 为实数,则
(A) (B) (C) (D)
3.“ ”是“直线 与圆 相切”的
(A)充分不必要条件 (B)必要不充分条件
(C)充分必要条件 (D)既不充分又不必要条件
4. 的展开式中,含 的正整数次幂的项共有
(A)4项 (B)3项 (C)2项 (D)1项
5.设函数 ,则 为
(A)周期函数,最小正周期为 (B)周期函数,最小正周期为
(C)周期函数,最小正周期为 (D)非周期函数
6.已知向量 ,若 ,则 与 的夹角为
(A) (B) (C) (D)
7.已知函数 的图象如右图所示
(其中 是函数 的导函数).下
面四个图象中 的图象大致是
8.若 ,则
(A) (B) (C) (D)
9.矩形ABCD中, ,沿AC将矩形ABCD折成一个直二面角 ,则四面体ABCD的外接球的体积为
(A) (B) (C) (D)
10.已知实数 满足等式 ,下列五个关系式
① ② ③ ④ ⑤
其中不可能成立的关系式有
(A)1个 (B)2个 (C)3个 (D)4个
11.在 中,O为坐标原点, ,则当 的面积达到最大值时,
(A) (B) (C) (D)
12.将 这 个数平均分成三组,则每组的三个数都成等差数列的概率为
(A) (B) (C) (D)
二.填空题:本大题共的小题,每小题4分,共16分.请把答案填在答题卡上.
13.若函数 是奇函数,则
14.设实数 满足 ,则 的最大值是_____
15.如图,在直三棱柱 中,
分别为 的中点,沿棱柱的表面从
E到F两点的最短路径的长度为______
16.以下四个关于圆锥曲线的命题中
①设A、B为两个定点, 为非零常数,若 ,则点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 ,则动点P的轨迹为椭圆;
③方程 的两根可分别作为椭圆和双曲线的离心率;
④双曲线 与椭圆 有相同的焦点.
其中真命题的序号为________(写出所有真命题的序号).
三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数 为常数),且方程 有两个实根为
(1)求函数 的解析式;
(2)设 ,解关于 的不等式:
18.(本小题满分12分)
已知向量 ,令
是否存在实数 ,使 (其中 是 的导函数)?若存在,则求
出 的值;若不存在,则证明之.
19.(本小题满分12分)
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢
得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达到9次时,或在此前某人已赢
得所有卡片时游戏终止.设 表示游戏终止时掷硬币的次数.
(1)求 的取值范围;
(2)求 的数学期望
20.(本小题满分12分)
如图,在长方体 中, ,点E在棱AB上移动.
(1)证明: ;
(2)当EAB的中点时,求点E到面 的距离;
(3)AE等于何值时,二面角 的大小为 .
21.(本小题满分12分)
已知数列 的各项都是正数,且满足:
(1)证明
(2)求数列 的通项公式
22.(本小题满分14分)
如图,设抛物线 的焦点为F,动点P
在直线 上运动,过P作抛物线
C的两条切线PA、PB,且与抛物线C分别相切
于A、B两点
(1)求 的重心G的轨迹方程;
(2)证明
2005年普通高等学校招生全国统一考试(江西卷)
理科数学参考答案
一、选择题
1.D 2.A 3.A 4.B 5.B 6.C 7.C 8.C 9.C 10.B 11.D 12.A
二、填空题
13. 14. 15. 16.③④
三、解答题
17.解:(1)将 得
(2)不等式即为
即
①当
②当
③ .
18.解:
19.解:(1)设正面出现的次数为m,反面出现的次数为n,则 ,可得:
(2)
20.解法(一)
(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1= ,AD1= ,
故
(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,
∴∠DHD1为二面角D1—EC—D的平面角.
设AE=x,则BE=2-x
解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)
(2)因为E为AB的中点,则E(1,1,0),从而 ,
,设平面ACD1的法向量为 ,则
也即 ,得 ,从而 ,所以点E到平面AD1C的距离为
(3)设平面D1EC的法向量 ,∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴ (不合,舍去), .
∴AE= 时,二面角D1—EC—D的大小为 .
21.解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
22.解:(1)设切点A、B坐标分别为 ,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以 ,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当 所以P点坐标为 ,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当 时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
,同理可得到P点到直线BF的距离 ,因此由d1=d2,可得到∠AFP=∠PFB.
2006年上海数学高考题
2023湖南高考数学试题总体来说不难。
湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整,如果说去年是5:3:2的话,那么今年试题易中难的比例约为4:3:3,基础试题的分值约有60分。单选题的前6题,多选题的前两题,填空题的14题、解答题的前4题的第一问均可视为基础题。
2023湖南高考数学试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。
一、考试难度:
1、2023年湖南高考数学难度与往年相比较难,湖南省教育厅对高考命题有一定的要求,要求试卷难度与全国高考保持一致。
2、2023年数学高考试题是由专门的出题组研发,以考查学生的思维能力和解决问题的能力。在考试内容方面,将基础知识和综合应用相结合,设置了综合运用,解决实际问题等多个考点。整个试卷难度大,需要学生具备较高的数学素养和综合能力。
二、试题类型:
1、2023年湖南高考数学试题类型全面,涉及了初中和高中各个阶段的数学知识。试卷中既有选择题,也有填空题和解答题,还包括了实际应用题。
2、选择题难度相对较低,但需要考生对数学基本概念和常用公式掌握得非常熟练,否则很难做好。填空题和解答题难度较大,需要考生综合应用数学知识进行分析和求解,且需注意解题方法和思路。而实际应用题则更加注重对数学知识的综合运用。
三、面对策略:
1、面对较难的数学试题,考生需要提前进行充分准备和备考,首先需要全面深入的复习基础知识,如函数、导数、积分等,打牢基础后再去攻克难关。
2、要注重实战演练和模拟考试,熟悉试题类型和出题风格,培养应试技巧,提高答题速度和准确率,还需多看一些数学竞赛资料,加强对数学知识的拓展和延伸,积极参加数学比赛,锻炼自己的数学思维和能力。
3、总的来说,2023年湖南高考数学试卷难度相对较大,需要考生具备扎实的基础知识,良好的数学思维和综合能力。为了备战高考,考生应该充分准备,提高自身素质,积极备战,迎接挑战,同时教育部门也应该不断完善高考制度,为广大考生创造公平公正的考试环境。
2018年浙江高考数学试卷试题及答案解析(答案WORD版)
2006年上海高考数学试卷(文科)
一.填空题:(本大题共12小题,每小题4分,共48分)
1. 已知集合A = { –1 , 3 , 2m – 1 },集合B = { 3 , 4 }。若B ? A,则实数m =__。
2. 已知两条直线l1:ax + 3y – 3 = 0 , l2:4x + 6y – 1 = 0。若l1‖l2,则a =______。
3. 若函数f(x) = ax(a > 0且a ? 1)的反函数的图像过点( 2 , –1 ),则a =_____。
4. 计算: =__________。
5. 若复数z = ( m – 2 ) + ( m + 1 )i为纯虚数(i为虚数单位),其中m ? R,则| | =__________。
6. 函数y = sinxcosx的最小正周期是_____________。
7. 已知双曲线的中心在原点,一个顶点的坐标是( 3 , 0 ),且焦距与虚轴长之比为5:4,则双曲线的标准方程是________。
8. 方程log3( x2 – 10 ) = 1 + log3x的解是_______。
9. 已知实数x , y满足 ,则y – 2x的最大值是______。
10. 在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是__________。(结果用分数表示)
11. 若曲线|y|2 = 2x + 1与直线y = b没有公共点,则b的取值范围是________。
12. 如图,平面中两条直线l1和l2相交于点O。对于平面上任意一点M,若p , q分别是M到直线l1和l2的距离,则称有序非负实数对( p , q )是点M的“距离坐标”。根据上述定义,“距离坐标”是( 1 , 2 )的点的个数是________。
二.选择题:(本大题共4小题,每小题4分,共16分)
13. 如图,在平行四边形ABCD中,下列结论中错误的是( )
(A) (B)
(C) (D)
14. 如果a < 0 , b > 0,那么,下列不等式中正确的是( )
(A) (B) (C) a2 < b2 (D) |a| > |b|
15. 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )
(A)充分非必要条件 (B)必要非充分条件
(C)充分必要条件 (D)既非充分又非必要条件
16. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
(A) 48 (B) 18 (C)24 (D) 36
三.解答题:(本大题共6小题,共86分)
17.(本小题满分12分)
已知a是第一象限的角,且 ,求 的值。
18.(本小题满分12分)
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1°)?
19.(本小题满分14分)
在直三棱柱ABC-A1B1C1中,?ABC = 90° , AB = BC = 1。
(1) 求异面直线B1C1与AC所成角的大小;
(2) 若直线A1C与平面ABC所成角为45°,求三棱锥A1-ABC的体积。
20.(本小题满分14分)
设数列{an}的前n项和为Sn,且对任意正整数n×an + Sn = 4096。
(1) 求数列{an}的通项公式;
(2) 设数列{log2an}的前n项和为Tn,对数列{Tn},从第几项起Tn < –509?
21.(本小题满分16分)
已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F( , 0 ),且右顶点为D( 2 , 0 ),设点A的坐标是( 1 , )。
(1) 求该椭圆的标准方程;
(2) 若是P椭圆上的动点,求线段PA中点M的轨迹方程;
(3) 过原点O的直线交椭圆于点B , C,求△ABC面积的最大值。
22.(本小题满分18分)
已知函数 有如下性质:如果常数a > 0,那么该函数在 上是减函数,在 上是增函数。
(1) 如果函数 在 上是减函数,在 上是增函数,求实常数b的值;
(2) 设常数c ? [ 1 , 4 ],求函数 ( 1 ? x ? 2 )的最大值和最小值;
(3) 当n是正整数时,研究函数 ( c > 0 )的单调性,并说明理由。
上海数学(文史类)参考答案
一、(第1题至笫12题)
1. 4 2. 2 3. 4. 5. 3 6.π 7.
8. 5 9. 0 10. 11.-1<b<1 12. 4
二、(第13题至笫16题)
13. C 14. A 15. A 16. D
三、(第17题至笫22题)
17.解: =
由已知可得sin ,
∴原式= .
18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.
于是,BC=10 .
∵ , ∴sin∠ACB= ,
∵∠ACB<90° ∴∠ACB=41°
∴乙船应朝北偏东71°方向沿直线前往B处救援.
19.解:(1) ∵BC‖B1C1, ∴∠ACB为异面直线B1C1与AC所成角(或它的补角)
∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°,
∴异面直线B1C1与AC所成角为45°.
(2) ∵AA1⊥平面ABC,
∠ACA1是A1C与平面ABC所成的角, ∠ACA =45°.
∵∠ABC=90°, AB=BC=1, AC= ,
∴AA1= .
∴三棱锥A1-ABC的体积V= S△ABC×AA1= .
20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048.
当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an
∴ = an=2048( )n-1.
(2) ∵log2an=log2[2048( )n-1]=12-n,
∴Tn= (-n2+23n).
由Tn<-509,解待n> ,而n是正整数,于是,n≥46.
∴从第46项起Tn<-509.
21.解(1)由已知得椭圆的半长轴a=2,半焦距c= ,则半短轴b=1.
又椭圆的焦点在x轴上, ∴椭圆的标准方程为
(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),
由 x= 得 x0=2x-1
y= y0=2y-
由,点P在椭圆上,得 ,
∴线段PA中点M的轨迹方程是 .
(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.
当直线BC不垂直于x轴时,说该直线方程为y=kx,代入 ,
解得B( , ),C(- ,- ),
则 ,又点A到直线BC的距离d= ,
∴△ABC的面积S△ABC=
于是S△ABC=
由 ≥-1,得S△ABC≤ ,其中,当k=- 时,等号成立.
∴S△ABC的最大值是 .
22.解(1) 由已知得 =4, ∴b=4.
(2) ∵c∈[1,4], ∴ ∈[1,2],
于是,当x= 时, 函数f(x)=x+ 取得最小值2 .
f(1)-f(2)= ,
当1≤c≤2时, 函数f(x)的最大值是f(2)=2+ ;
当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c.
(3)设0<x1<x2,g(x2)-g(x1)= .
当 <x1<x2时, g(x2)>g(x1), 函数g(x)在[ ,+∞)上是增函数;
当0<x1<x2< 时, g(x2)>g(x1), 函数g(x)在(0, ]上是减函数.
当n是奇数时,g(x)是奇函数,
函数g(x) 在(-∞,- ]上是增函数, 在[- ,0)上是减函数.
当n是偶数时, g(x)是偶函数,
函数g(x)在(-∞,- )上是减函数, 在[- ,0]上是增函数.
2022高考数学试卷(2022高考数学试卷全国甲卷)
2018年浙江高考数学试卷试题及答案解析(答案WORD版)
2015年浙江省高考数学命题思路
(数学学科组)
2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。
试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。
1.稳定考查基础,推陈出新
2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。
2.稳定能力要求,角度变换
试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。
3.稳定文理差异,逐步调整
试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。
4.稳定试卷框架,形式渐变
试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。
试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。
2015年浙江省高考数学试题评析
调整试卷结构凸显能力考查
绍兴一级教师虞金龙
浙江省教研室特级教师张金良
今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:
1.考查双基、注重覆盖
试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。
2.注重思维、凸显能力
今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。
3.分层考查、文理有别
试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。
4.稳中有变、坚持创新
创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。
统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。
2022新高考全国卷的数学题是什么难度?有多少基础分?
随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。
一、2022年新高考全国卷的数学题处于中上等难度
根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分
一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结
总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。
2022年高考数学试题有哪些新变化?
2022年高考数学落实立德树人根本任务,促进学生德智体美劳全面发展,体现高考改革的要求。试卷突出数学学科特点,强化基础考查,突出关键能力,加强教考衔接,服务“双减”政策实施,助力基础教育提质增效。
变化一、设置现实情境,发挥育人作用
高考数学命题坚持思想性与科学性的统一,发挥数学应用广泛、联系实际的学科特点,设置真实情境,命制具有教育意义的试题,发挥数学考试的教育功能和引导作用。
变化二、设置优秀传统文化情境
数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如新高考Ⅱ卷第3题以中国古代建筑中的举架结构为背景,考查学生综合应用等差数列、解析几何、三角函数等基础知识解决实际问题的能力。全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。
变化三、设置社会经济发展情境
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如新高考Ⅰ卷第4题以我国的重大建设成就“南水北调”工程为背景,考查学生的空间想象、运算求解能力,试题引导学生关注社会主义建设的成果,增强社会责任感。全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。全国乙卷文、理科第19题以生态环境建设为背景材料,考查学生应用统计的基本知识和基础方法解决实际问题的能力,对数据处理与数算素养也作了相应的考查。
2022年高考数学全国乙卷试题“难到哭”,与往年相比真的很难吗?
数学题真的很难吗?这是毋庸置疑的,因为高考并不是一场很普通的考试,高考是涉及到选拔人才的,如果说太过于简单的话,那么考试还有什么必要呢那么今年的数学题呢其实难度是有点难度,但是并不是很难,因为对于那些学霸来说是稍微有那么点难度,因为这是选拔性的考试,而不是普通的考试,有难度也是很正常的,如果没有任何难度的话,你就没有必要去举举行这样的考试,因为这样的考试就是为了选拔人才而存在的一次考试。
有难度才能出现真水平
数学试卷之所以难,张新伟数学试卷能够体现出一个人在数学当中的真正水平,那么现在这个数学试卷非常的难也是很正常的,因为这是选拔性的考试,如果说有人在这么困难的试卷当中依然是拿了很高的分,这就证明了这个人的水平是真的,强但是难是很正常的,因为如果没有难度的话,就没有人会去考这一次试的,对于很多学霸来说,这一次的考试也是稍微有点难度,并不是很难有很多的学霸在考完也说了,稍微有点难度。
都是一样的
这次考试说数学试卷难其实也是一样的,对于大家来说都是考同一份试卷,你觉得这一份试卷难,大家都觉得这一份试卷是非常难的,所以说大家都是站在同一起跑线上的,难与不难都是考同一份试卷,所以说是很公平的,比起之前的考试来说,也是增加了一些难度,但并没有增加很多。
总的来说这一次的考试是比较难,但是是挑选顶尖的那种数学人才而进行的一次考试,每一次的考试都是对于数学水平高的人才的一次挑选,如果那种水平很高的人才的话,他必然是能够考很高分的,并不会因为增加那么点难度而考了低分