您现在的位置是: 首页 > 录取信息 录取信息
高考数学三角函数公式_高考数学三角函数公式大全总结
tamoadmin 2024-07-09 人已围观
简介1.高考数学中的常考三角函数的公式。2.高考对三角函数的要求3.高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”的奇偶是如何定义的4.三角函数最小正周期5.帮我详细解释一下三角函数、反三角函数和对数函数正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径 余弦定理:a^2=b^2+c^2-2bc*cosA sin(A+B)=sinC sin(A+B)=sinAco
1.高考数学中的常考三角函数的公式。
2.高考对三角函数的要求
3.高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”的奇偶是如何定义的
4.三角函数最小正周期
5.帮我详细解释一下三角函数、反三角函数和对数函数
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a^2=b^2+c^2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)^2-1=(cosA)^2-(sinA)^2=1-2(sinA)^2
tan2A=2tanA/[1-(tanA)^2]
(sinA)^2+(cosA)^2=1
解三角形大概常用的就这些
概率似乎没有什么现成的公式可以套
立体几何求点面距离常用等积法,构建一个四面体,用另外一对底面和高算出体积再除以所求点面距作为高对应的底面的面积
计算二面角常用三垂线定理,或者就是直接构造,原则是要方便计算,不要构造出来的角每条边都要算半天就得不偿失了
圆锥曲线似乎没有现成的公式,但有一些常用方法,比如设点消点,或者椭圆的时候还可以用参数方程计算
数列就更简单了,一般就是求通项然后证明不等式,不等式就没办法了,我也不能保证每次都证出来,通项常用的方法就是改变下标,比如Sn-S(n-1)=an
直接求不出可以尝试着求倒数的通项,很可能很好求 数学高考基础知识、常见结论详解
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。
函数 的图象与直线 交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
① ,则 ; ② 则 ;
③ ,则 ; ④如: ,则 ;
⑤含参问题的定义域要分类讨论;
如:已知函数 的定义域是 ,求 的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:① (2种方法);
② (2种方法);③ (2种方法);
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数
五、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系: ;
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
如:求下列函数的反函数: ; ;
七、常用的初等函数:
(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;
(2)一元二次函数:
一般式: ;对称轴方程是 ;顶点为 ;
两点式: ;对称轴方程是 ;与 轴的交点为 ;
顶点式: ;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;
②二次函数求最值问题:首先要采用配方法,化为 的形式,
Ⅰ、若顶点的横坐标在给定的区间上,则
时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;
时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上,则
时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;
时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:
根的情况
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
充要条件
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数运算法则: ; ; 。
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
(5)对数函数:
指数运算法则: ; ; ;
对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
注意:(1) 与 的图象关系是 ;
(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
(3)已知函数 的定义域为 ,求 的取值范围。
已知函数 的值域为 ,求 的取值范围。
六、 的图象:
定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。
七、补充内容:
抽象函数的性质所对应的一些具体特殊函数模型:
① 正比例函数
② ; ;
③ ; ;
④ ;
三、导 数
1.求导法则:
(c)/=0 这里c是常数。即常数的导数值为0。
(xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.导数的几何物理意义:
k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。
V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
3.导数的应用:
①求切线的斜率。
②导数与函数的单调性的关系
一 与 为增函数的关系。
能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。
二 时, 与 为增函数的关系。
若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。
三 与 为增函数的关系。
为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。
四单调区间的求解过程,已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。
③求极值、求最值。
注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。
f/(x0)=0不能得到当x=x0时,函数有极值。
但是,当x=x0时,函数有极值 f/(x0)=0
判断极值,还需结合函数的单调性说明。
4.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
四、不等式
一、不等式的基本性质:
注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数。
若 ,则 (当且仅当 时取等号)
基本变形:① ; ;
②若 ,则 ,
基本应用:①放缩,变形;
②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。
当 (常数),当且仅当 时, ;
当 (常数),当且仅当 时, ;
常用的方法为:拆、凑、平方;
如:①函数 的最小值 。
②若正数 满足 ,则 的最小值 。
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
(1)设 ,则 (当且仅当 时取等号)
(2) (当且仅当 时取等号); (当且仅当 时取等号)
(3) ; ;
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:
⑴添加或舍去一些项,如: ;
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,如: ;
⑷利用常用结论:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度小)
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如:
已知 ,可设 ;
已知 ,可设 ( );
已知 ,可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ;
Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ;
(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:
(5)绝对值不等式:若 ,则 ; ;
注意:(1).几何意义: : ; : ;
(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ;
(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(6)分式不等式的解法:通解变形为整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(8)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。
五、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,
27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
六、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量。
(1)| |=| |·| |;
(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.
(3)若 =( ),则 · =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。
(2).两个向量的数量积:
已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);
⊥b ·b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
七、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
具体的公式
高中数学公式大全
高中数学常用公式及常用结论
高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式
.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
教育网站大全
延安数学教育网站
数学网站联盟
快乐数学
数学教育教学资源中心
数学中国
麦斯数学网
高考数学中的常考三角函数的公式。
高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。
文科数学高考必背公式
一、三角形公式
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
二、诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα
三、函数
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
高考文科数学必背公式口诀一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
三、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
高考对三角函数的要求
三角函数公式及应用
一、知识要点
1.三角函数式的变形应利用三角公式从以下三个方面入手:
(1)变名:注意条件与结论中三角函数式的名称有什么差别及联系,通过同角三角函数公式,诱导公式,万能公式等,达到统一函数名称的目的.
(2)变角:注意条件与结论中三角函数式的角有什么差别及联系,通过诱导公式、和、差、倍、半角的三角函数公式等,达到把三角函数中的角统一起来的目的.
(3)变运算形式:根据需要,将条件与结论的运算形式化一,将等式一边的运算形式化成另一边的运算形式,通过升次与降次的转化以达到目的.
2.三角形中的三角函数(内角和定理、正弦定理、余弦定理)
3.应用三角变换公式,要注意公式间的联系,公式成立的条件.每个三角公式的结构特征,都决定了它的双向功能,从左到右及从右到左常常可起到不同的作用.所谓三角恒等变形是指在有意义的条件下有恒等关系,但三角变换常常会改变三角式中角的取值范围,因此在讨论由三角函数式表示的函数性质时,应首先确定其定义域,以确保变形后的函数与原函数是同一函数.
高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”的奇偶是如何定义的
高考数学三角函数知识中的难点较多,很多学生都难以理解深刻。下面学习啦小编给大家带来高考数学三角函数重点考点,希望对你有帮助。
高考数学三角函数重点考点(一)
由解析式研究函数的性质
常见的考点:
求函数的最小正周期,求函数在某区间上的最值,求函数的单调区间,判定函数的奇偶性,求对称中心,对称轴方程,以及所给函数与y=sinx的图像之间的变换关系等等。
对于这些问题,一般要利用三角恒变换公式将函数解析式化为y=Asin(ωx+φ)的形式,然后再求相应的结果即可。
在这一过程中,一般要先利用诱导公式、二倍角公式、两角和与差的恒等式等将函数化为asinωx+bcosωx形式(其中常见的是两个系数a、b的比为1:1,1:1),然后再利用辅助角公式,化为y=Asin(ωx+φ)即可。
高考数学三角函数重点考点
高考数学三角函数重点考点(二)
根据条件确定函数解析式
这一类题目经常会给出函数的图像,求函数解析式y=Asin(ωx+φ)+B。
A=(最大值-最小值)/2;
B=(最大值+最小值)/2;
通过观察得到函数的周期T(主要是通过最大值点、最小值点、“平衡点”的横坐标之间的距离来确定),然后利用周期公式T=2π/ω来求得ω;
利用特殊点(例如最高点,最低点,与x轴的交点,图像上特别标明坐标的点等)求出某一φ';
最后利用诱导公式化为符合要求的解析式。
高考数学三角函数重点考点
高考数学重点考点
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、 “充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数 、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的
三角函数最小正周期
符号看象限:第一象限全都正值,第二象限sin正值,第三象限tan正值,第四象限cos正值。
奇变偶不变:例如sin(π+x)=sin[(2π/2)+x]=-sinx,因为把π通分后,保证分母是2,看分子的π前系数为2,是偶数,所以,不变名字,结果还是sin,但是π+x为第三象限角,为负数
,所以为:-sinx
帮我详细解释一下三角函数、反三角函数和对数函数
三角函数最小正周期答案如下:
1、y=Asin(wx+中)+h或者y=Acos(wx+)+h的最小正周期T=2//w。
2、y=Atan(wx+p)+h或者y=Acot(wx+p)+h的最小正周期T=T/lw。
3、y=lsinwx|或y=lcoswxl的最小正周期T=T/lwl。
4、y=ltanwx|或y=lcotwxl的最小正周期T=/lw。
一、三角函数最小正周期怎么求
1、定义法:直接利用周期函数的定义求出周期。
2、公式法:通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2/,正余切函数T=T/l
3、转化法:对于比较复杂的三角函数,可以通过恒等变形转化为等类型,再用公式法求解。
4、最小公倍数法:由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。
二、三角函数在高考中的重要性
三角函数有关的知识内容和题型一直是高中数学的基础内容和重要内容之一,历来在高考数学中占有重要的地位。三角函数不仅是连接几何与代数的一座桥梁,还是沟通初等数学与高等数学的一条通道。
三角函数除了具有一般函数的性质外,还呈现出与其他基本初等函数不一样的特征,例如具有其独特的周期性和对称性,并且与向量、复数、立体几何、解析几何等数学知识有较为紧密的联系。
因此,高考数学对三角函数的考查,在考查基础知识和基本方法的基础上,注重化归与转化的思想方法的渗透,注重整体思想的运用,注重与其他知识的综合,注重文理科不同要求的体现。
三角函数知识具有丰富的实际背景和广泛的应用价值,在其它学科中都有广泛的应用,例如地理学、力学、电磁学等。正是因为三角函数内容具有这么丰富的特征,因此在高考数学中考查体现了基础性,综合性和应用性的特征。
我们通过对三角函数有关的高考试题的研究,针对其中有关三角函数、三角恒等变换和解三角形的题目进行了整理和分析,总结命题特点,希望能帮助考生收获相应的高考复习建议。
.函数y=arcsinx的定义域是 [-1, 1] ,值域是.
2.函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] .
3.函数y=arctgx的定义域是 R ,值域是.
4.函数y=arcctgx的定义域是 R ,值域是 (0, π) .
5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=.
6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=.
7.若cosx=-, x∈(, π),则x=.
8.若sinx=-, x∈(-, 0),则x=.
9.若3ctgx+1=0, x∈(0, π),则x=.
二.基本要求:
1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;
2.掌握反三角函数的定义域和值域,y=arcsinx, x∈[-1, 1], y∈[-,], y=arccosx, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围;
3.符号arcsinx可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]上的一个实数;同样符号arccosx可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数;
4.y=arcsinx等价于siny=x, y∈[-,], y=arccosx等价于cosy=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;
5.注意恒等式sin(arcsinx)=x, x∈[-1, 1] , cos(arccosx)=x, x∈[-1, 1], arcsin(sinx)=x, x∈[-,], arccos(cosx)=x, x∈[0, π]的运用的条件;
6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用;
7.注意恒等式arcsinx+arccosx=, arctgx+arcctgx=的应用。
例一.下列各式中成立的是(C)。
(A)arcctg(-1)=- (B)arccos(-)=-
(C)sin[arcsin(-)]=- (D)arctg(tgπ)=π
解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π],
(D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。
例二.下列函数中,存在反函数的是(D)。
(A)y=sinx, x∈[-π, 0] (B)y=sinx, x∈[, ]
(C)y=sinx, x∈[,] (D)y=sinx, x∈[,]
解:本题是判断函数y=sinx在哪个区间上是单调函数,由于y=sinx在区间[,]上是单调递减函数, 所以选D。
例三. arcsin(sin10)等于(C)。
(A)2π-10 (B)10-2π (C)3π-10 (D)10-3π
解:本题是判断哪个角度的正弦值与sin10相等,且该角度在[-, ]上。
由于sin(3π-10)=sin(π-10)=sin10, 且3π-10∈[-, ], 所以选C。
例四.求出下列函数的反函数,并求其定义域和值域。
(1)f (x)=2sin2x, x∈[, ];(2)f (x)=+arccos2x.
解:(1) x∈[, ], 2x∈[, ], 2x-π∈[-, ], -2≤y≤2
由y=2sin2x, 得sin2x=, sin(2x-π)=-sin2x=-, ∴ 2x-π=arcsin(-),
∴ x=-arcsin, ∴ f -1(x)=-arcsin, -2≤x≤2, y∈[, ].
(2) f (x)=+arccos2x, x∈[-, ], y∈[,],
∴ arccos2x=y-, 2x=cos(y-), x=cos(y-)=siny,
∴f -1(x)=sinx , x∈[,], y∈[-, ].
例五.求下列函数的定义域和值域:
(1) y=arccos; (2) y=arcsin(-x2+x); (3) y=arcctg(2x-1),
解:(1) y=arccos, 0<≤1, ∴ x≥1, y∈[0, ).
(2) y=arcsin(-x2+x), -1≤-x2+x≤1, ∴ ≤x≤,
由于-x2+1=-(x-)2+, ∴ -1≤-x2+x≤, ∴ -≤y≤arcsin.
(3) y=arcctg(2x-1), 由于2x-1>-1, ∴ 0< arcctg(2x-1)<, ∴ x∈R, y∈(0, ).
例六.求下列函数的值域:
(1) y=arccos(sinx), x∈(-, ); (2) y=arcsinx+arctgx.
解:(1) ∵x∈(-, ), ∴ sinx∈(-, 1], ∴ y∈[0, ).
(2) ∵y=arcsinx+arctgx., x∈[-1, 1], 且arcsinx与arctgx都是增函数,
∴ -≤arcsinx≤, -≤arctgx≤, ∴ y∈[-,].
例七.判断下列函数的奇偶性:
(1) f (x)=xarcsin(sinx); (2) f (x)=-arcctgx.
解:(1) f (x)的定义域是R, f (-x)=(-x)arcsin[sin(-x)]=xarcsin(sinx)=f (x),
∴ f (x)是偶函数;
(2) f (x)的定义域是R,
f (-x)=-arcctg(-x)=-(π-arcctgx)=arcctgx-=-f (-x),
∴ f (x)是奇函数.
例八.作函数y=arcsin(sinx), x∈[-π, π]的图象.
解:y=arcsin(sinx), x∈[-π, π], 得, 图象略。
例九.比较arcsin, arctg, arccos(-)的大小。
解:arcsin<, arctg<, arccos(-)>, ∴arccos(-)最大,
设arcsin=α,sinα=, 设arctg=β, tgβ=, ∴ sinβ=<sinα, ∴ β<α,
∴ arctg< arcsin< arccos(-).
例十.解不等式:(1) arcsinx<arccosx; (2) 3arcsinx-arccosx>.
解:(1) x∈[-1, 1], 当x=时, arcsinx=arccosx, 又arcsinx是增函数,arccosx是减函数,
∴ 当x∈[-1, )时, arcsinx<arccosx.
(2) ∵ arccosx=-arcsinx, ∴ 原式化简得4arcsinx>, ∴ arcsinx>=arcsin,
∵ arcsinx是增函数, ∴ <x≤1.
三.基本技能训练题:
1.下列关系式总成立的是(B)。
(A)π-arccosx>0 (B)π-arcctgx>0 (C)arcsinx-≥0 (D)arctgx->0
2.定义在(-∞, ∞)上的减函数是(D)。
(A)y=arcsinx (B)y=arccosx (C)y=arctgx (D)y=arcctgx
3.不等式arcsinx>-的解集是. 4.不等式arccosx>的解集是.
四.试题精选:
(一) 选择题:
1.cos(arccos)的值是(D)。
(A) (B) (C)cos (D)不存在
2.已知arcsinx>1,那么x的范围是(C)。
(A)sin1<x< (B)sinx<x≤ (C)sin1<x≤1 (D)
3.已知y=arcsinx·arctg|x| (-1≤x≤1), 那么这个函数(A)。
(A)是奇函数 (B)是偶函数 (C)既是奇函数又是偶函数 (D)非奇非偶函数
4.若a=arcsin(-), b=arcctg(-), c=arccos(-),则a, b, c的大小关系是(B)。
(A)a<b<c (B)a<c<b (C)c<a<b (D)c<b<a
5.已知tgx=-, x∈(, π),则x=(C)。
(A)+arctg(-)(B)π-arctg(-)(C)π+arctg(-)(D)
6.函数f (x)=2arccos(x-2)的反函数是(D)。
(A)y=(cosx-2) (0≤x≤π) (B)y= cos(x-2) (0≤x≤2π)
(C)y= cos(+2) (0≤x≤π) (D)y= cos+2 (0≤x≤2π)
7.若arccosx≥1,则x的取值范围是(D)。
(A)[-1, 1] (B)[-1, 0] (C)[0, 1] (D)[-1, arccos1]
8.函数y=arccos(sinx) (-<x<)的值域是(B)。
(A)(, ) (B)[0, ] (C)(, ) (D)[,]
9.已知x∈[-1, 0],则下列等式成立的是(B)。
(A)arcsin=arccosx (B)arcsin=π-arccosx
(C)arccos=arcsinx (D)arccos=π-arcsinx
10.直线2x+y+3=0的倾斜角等于(C)。
(A)arctg2 (B)arctg(-2) (C)π-arctg2 (D)π-arctg(-2)
(二) 填空题:
11.若cosα=- (<α<π),则α=. (用反余弦表示)
12.函数y=(arcsinx)2+2arcsinx-1的最小值是 -2 .
13.函数y=2sin2x (x∈[-, ])的反函数是.
14.函数y=arcsin的定义域是 x≤1或x≥3 ,值域是
15.用反正切表示直线ax-y+a=0 (a≠0)的倾斜角为α=
(三) 解答题:
16.求下列函数的反函数:
(1) y=3cos2x, x∈[-, 0]; (2) y=π+arccosx2 (0<x≤1).
解:(1) x∈[-, 0], ∴ 2x∈[-π, 0], 函数y=3cos2x在定义域内是单值函数.
且-3≤y≤3. ∴ π+2x∈[0, π], y=3cos2x=-3cos(π+2x), cos(π+2x)=-,
∴ π+2x=arccos, ∴x=arccos-,
∴y=3cos2x, x∈[-, 0]的反函数是y=arccos-, -3≤x≤3.
(2) ∵0<x≤1, π≤y<, ∴ arccosx2=y-π, x2=cos(y-π), x=,
∴ 原函数的反函数是y=, π≤x<.
17.求函数y=(arccosx)2-3arccosx的最值及相应的x的值。
解:函数y=(arccosx)2-3arccosx, x∈[-1, 1], arccosx∈[0, π]
设arccosx=t, 0≤t≤π, ∴ y=t2-3t=(t-)2-,
∴ 当t=时,即x=cos时, 函数取得最小值-,
当t=π时,即x=-1时,函数取得最大值π2-3π.
18.若f (arccosx)=x2+4x, 求f (x)的最值及相应的x的值。
解:设arccosx=t, t∈[0, π], x=cost, 代入得f (t)=cos2t+4cost,
∴ f (x)=cos2x+4cosx, x∈[0, π], cosx∈[-1, 1], f (x)=(cosx+2)2-4,
∴ 当cosx=-1时,即x=π时,函数取得最小值-3.
当cosx=1时,即x=0时,函数取得最大值5.
19.(1)求函数y=arccos(x2-2x)的单调递减区间; (2)求函数arctg(x2-2x)的单调递增区间。
解:(1) 函数y=arccosu, u∈[-1, 1]是减函数,
∴ -1≤x2-2x≤1,1-≤x≤1+, 又x2-2x=(x-1)2+1,
∴ 1≤x≤1+时, u=x2-2x为增函数,根据复合函数的概念知此时原函数为减函数。
(2) 函数y=arctgu增函数, u∈R, 又x2-2x=(x-1)2+1,
∴ 当x≥1时,原函数是增函数。
20.在曲线y=5sin(arccos)上求一个点,使它到直线x+y-10=0的距离最远,并求出这个最远距离
解:设arccos=α, -3≤x≤3, cosα=,
y=5sinα=5,
三角函数的性质和图象
[重点]:复合三角函数的性质和图象
[难点]:复合三角函数的图象变换
[例题讲解]
例1.求函数的定义域:f(x)=
解:
(1): 2kπ≤x≤(2k+1)π (k∈Z)
(2): -4<x<4
定义域为 。
注意:sinx中的自变量x的单位是“弧度”,x∈R。
例2.求y=cos( -2x)的递增区间。
分析(1):该函数是y=cosu,u= -2x的复合函数,
∵ u= -2x为减函数,要求y=cos( -2x)的递增区间,只须求y=cosu的递减区间。
方法(1):∵ y=cosu的递减区间为2kπ≤u≤π+2kπ (k∈Z)
∴ 令2kπ≤ -2x≤π+2kπ,- -kπ≤x≤ -kπ (k∈Z)
∵ -k与k等效,∴ 递增区间为[- +kπ, +kπ] (k∈Z)。
分析(2):∵ cosu为偶函数,∴ y=cos(2x- )
设y=cost,t=2x- ,
∵ t=2x- 为增函数,要求y=cos(2x- )的递增区间,只须求y=cost的递增区间。
方法(2):∵ y=cost的递增区间为π+2kπ≤t≤2π+2kπ (k∈Z)
∴ 令π+2kπ≤2x- ≤2π+2kπ, +kπ≤x≤ +kπ (k∈Z)
∴ 递增区间为 +kπ≤x≤ +kπ (k∈Z)。
注意:两种方法求得的结果表面上看不相同,但是从图上看两种形式所表示的范围完全相同。
例3.求函数y=sin2x+sinx·sin(x+ )的周期和值域。
分析:求函数的周期、值域、单调区间等,对于三角函数式常用的方法是转化为一个角的一个三角函数式。
解:y=
=
=
=
∴ T= =π,值域为[ ]。
例4.求函数y=sinx·cosx+sinx+cosx的最大值。
分析:sinx+cosx与sinxcosx有相互转化的关系,若将sinx+cosx看成为整体,设为新的元,函数式可转化为新元的函数式,注意新元的取值范围。
解:设sinx+cosx=t,t∈[- , ]。
则(sinx+cosx)2=t2,即1+2sinxcosx=t2,sinxcosx= ,
y=t+ = (t2+2t)- = (t+1)2-1,
当t= 时,ymax= + 。
例5.判断下列函数的奇偶性
(1)y=sin(x+ )- cos(x+ )
(2)y=
分析:定义域为R,关于原点对称,经过等值变形尽量转化为一个角的一个三角函数式,再判断其奇偶性。
解:(1)y=2[ sin(x+ )- cos(x+ )]
=2sin[(x+ )- ]
=2sinx
∴ 函数为奇函数。
(2)∵ 从分母可以得出定义域x≠π+2kπ且 (k∈Z),在直角坐标系中定义域关于原点不对称。
∴ 函数为非奇非偶函数。
例6.写出下列函数图象的解析式
(1)将函数y=sinx的图象上所有点向左平移 个单位,再把所得图象上各点的横坐标扩大为原来的2倍,得到所求函数的图象。
(2)将函数y=cosx的图象上所有点横坐标缩为原来的一半,纵坐标保持不变,然后把图象向左平移 个单位,得到所求函数的图象。
(1)分析:按图象变换的顺序,自变量x的改变量依次是:+ ; 倍。
图象的解析式依次为:y=sinx→y=sin(x+ )→y=sin( )。
解:所求函数图象的解析式为y=sin( ),也可以写为:y=sin (x+ ).
(2)分析:按图象变换的顺序,自变量x的改变量依次是:2倍;+ 。
图象的解析式依次为:y=cosx→y=cos2x→y=cos2(x+ )。
解:所求函数图象的解析式为y=cos2(x+ ),也可以写为:y=cos(2x+ )。
例7.已知函数y=sin(3x+ )
(1)判断函数的奇偶性;
(2)判断函数的对称性。
分析:函数的奇偶性与函数的对称性既有联系又有区别,用定义法,换元法。
解:(1)定义域为R,设f(x)=sin(3x+ )
f(-x)=sin[3(-x)+ ]=-sin(3x- )
∵ sin[3(-x)+ ]≠sin(3x+ )
sin[3(-x)+ ]≠-sin(3x+ )
∴ 函数y=sin(3x+ )不是奇函数也不是偶函数。
(2)函数y=sin(3x+ )的图象是轴对称图形,对称轴方程是3x+ =kπ+ 。
即x= (k∈Z)
函数y=sin(3x+ )的图象也是中心对称图形,∵ y=sinu图象的对称中心的坐标是(kπ,0)。
令3x+ =kπ,x= (k∈Z)。
∴ y=sin(3x+ )图象的对称中心的坐标是( ,0) (k∈Z)。
测试
选择题
1.y= 的定义域是(以下k∈Z)( )
(A)[2k ] (B)[2k ]
(C)[2k ] (D)(-∞,+∞)
2.f(x)= cos(3x-θ)-sin(3x-θ)是奇函数,则θ=( )(以下k∈Z)
(A)kπ (B)kπ+ (C)kπ- (D)kπ+
3.在[ ]上与函数y=cos(x-π)的图象相同的函数是( )
(A)y= (B)y= (C)y=cos(x- ) (D)y=cos(-x-4π)
4.把函数y=sin(2x- )的图象向右平移 个单位,所得图像对应的函数是( )
(A)非奇非偶函数 (B)既是奇函数,又是偶函数
(C)奇函数 (D)偶函数
5.将函数y=sin( )的图象作如下的变换便得到函数y=sin x的图象( )
(A)向右平移 (B)向左平移 (C)向右平移 (D)向左平移
6.函数f(x)=sin(ωx+θ)·cos(ωx+θ) (ω>0)以2为最小正周期,且能在x=2时取得最大值,则θ的一个值是( )
(A)- π (B)- π (C) π (D)
7.ω是正实数,函数 在 上递增,那么( )
(A) (B) (C) (D)
8.y=cos( +2x)sin( -2x)的单调递增区间是(以下k∈Z)( )
(A)[ ] (B)[ ]
(C)[ ] (D)[ ]
9.函数y=3sin(x+ 的最大值为( )
(A)4 (B) (C)7 (D)8
10.当x∈( )时,f(x)=|sin(3kx+ )|有一个完整的周期,则k能取的最小正整数值是( )
(A)12 (B)13 (C)25 (D)26
答案与解析
答案:1、D 2、C 3、A 4、D 5、C 6、A 7、A 8、A 9、D 10、B
解析:
1.对于x∈R,-1≤sinx≤1,cos(sinx)>0恒成立,所以x∈R。
2.整理得到f(x)=2sin(+θ-3x),则根据f(0)=0代入选项验证即可。
注:奇函数的一个性质:如果奇函数f(x)的定义域中有0,则f(0)=0(反之不一定成立)。
3.首先整理,y=cos(x-π)=-cosx,
y= =|cosx|=-cosx (∵x∈[],cosx<0)
y= (x= 时无意义,显然不是答案)
y=cos(x- π)=-sinx,
y=cos(-x-4π)=cosx。
4.y=sin(2x- ) y=sin(2(x- )- )=-cos2x。
注:对于函数图象平移,掌握左加右减(向左平移时x加一个数,向右平移时x减一个数)的法则,还需注意,只是改变(x)。
5.y=sin x=sin[ (x- )+ ], y=sin( x+ )→y=sin[ (x- )+ ]
即x变成x- ,所以是向右平移 个单位。
6.整理得f(x)= sin(2ωx+2θ),由T= =2,ω= ,且x=2时,f(x)取最大值,代入选项验证即可。
7.令ωx=t,因为f(x)=2sint在[- , ]上是增函数,
所以- ≤t≤ ,即- ≤ωx≤ ,- ≤x≤ ,
根据已知f(x)在[- , ]上递增,所以 ,解出0<ω≤ 。
8.化简出y= - sin4x=- sin4x+ ,原题即求sin4x的递减区间,
2kπ+ ≤4x≤2kπ+ π ≤x≤ π。
9.注意到 ,化简原式y=8cos(x- )。
10.函数f(x)的周期T= ,根据题意T ,即 ,解出k≥4π。
注:函数f(x)=|sinωx|的周期是T= 。
含参数的三角函数问题
有关含参数的问题,因为能很好的考察分类讨论的数学思想和比较深刻地考察数学能力,在前几年的高考中一度成为热门。但是因为难度较大,近两年有所降温。含参数问题较多的出现在不等式和函数的有关问题中,在三角函数中也时有涉及。但因为三角函数在高考中多以低档题和中档题出现,本部分内容较难。
所谓的含参数,就是与变量有关。因此处理这类问题要有变量的思想,就是要把参数看作是一个运动的、一个变化的量。这个参数变化为不同的值时,可能对解题过程产生不同的影响,这就需要分类讨论。下面几个例题都是参变量与三角函数的图象与性质相结合的问题。
例1.若对于一切实数x,cos2x=acos2x+bcosx+c恒成立,那么a2+b2+c2=_______。
分析:当变量x变化时,cosx的值也在变化,但这个变化不能影响整个式子的值。
解:原式整理成:(a-2)cos2x+bcosx+c+1=0,即不论x取何值,这个式子恒成立,
则必须a-2=0,b=0,c+1=0同时成立,解出a=2,b=0,c=-1,所以a2+b2+c2=5。
注:要使acosx不受x值变化的影响,只能a=0。
例2.已知α,β∈[- , ],sinα=1-a, sinβ=1-a2, 又α+β<0, 求a的取值范围。
分析:要求变量a的取值范围,则必须根据已知条件找到一个含有a的不等式,同时注意本题中正弦函数的有界性。
解:因为α+β<0,则α<-β,同时α,-β∈[- , ],
根据y=sinx在[- , ]上是增函数,得到sinα<sin(-β)=-sinβ,
所以有 ,解出1<a≤ 。
注:本题主要考察三角函数的值域和灵活应用单调性。
例3.函数y=sin2x+acos2x的图像关于直线x=- 对称,那么a的值是多少?
分析:函数f(x)的图象关于直线x=a对称,则有f(a+x)=f(a-x)
解:令f(x)=sin2x+acos2x,根据题意对于任意的x,f(- +x)=f(- -x)恒成立,
即sin(- +2x)+a·cos(- +2x)=sin(- -2x)+a·cos(- -2x)
sin(- +2x)+sin( +2x)=a[cos( +2x)-cos(- +2x)]
(1+a)sin2x=0
要使上式恒成立(不受x取值影响),必须1+a=0,即a=-1。
注:1、是不是有和例1类似的地方?
2、对于选择题,完全可以取关于x=- 对称的两个点代入验证,比如 。
例4.已知方程2sin2x-cos2x+2sinx+m=0有解,求实数m的取值范围。
分析:把变量m单独放在一边,考察另一边的取值范围。
解:由原式得到m=-3sin2x-2sinx+1,
令y=-3sin2x-2sinx+1,则y有最大最小值,只要m在这个范围内,原方程就有解,
再令t=sinx,则-1≤t≤1,求y=-3t2-2t+1的值域。根据二次函数的图象-4≤y≤ ,
即-4≤m≤ 时,原方程有解。
注:把变量分离,单独放在一边也是处理变量的一个技巧。下面例5也用到了。
例5.已知0≤θ≤ ,求使cos2θ+2msinθ-2m-2<0成立的实数m的取值范围。
解:原式即2m(sinθ-1)<1+sin2θ
当sinθ-1=0,即θ= 时,不论m取何值,原式成立,即m∈R.
当sinθ-1≠0,即θ≠ 时,原式即2m> (sinθ-1<0)
令y= ,则y是一个变量,要使2m>y成立,只要2m>y的最大值即可。
下面求y的最大值(0≤sinθ<1 0<1-sinθ≤1)
y=
=sinθ+
=sinθ+1+
=-[(1-sinθ)+ ]+2
∵ (1-sinθ)+ 在1-sinθ=1即θ=0时,取最小值3,
∴ y最大值=-1,2m>-1,m>- ,
所以当θ= 时,m取任意实数,原式都成立,
当0≤θ< 时,m>- 原式都成立。
注意:1、本题是一个综合题,属于较难的题目,考察的知识较多,但要体会变量的思想。
2、求函数y=x+ (a>0)的最值,可根据图像观察在(0,+∞)的图象,如图(是奇函数)。
总结:在例1,3,4,5中都体现了变量的思想,注意体会。例5比较深刻地考察了分类讨论的思想。另外,含参数问题往往和取值范围联系在一起,也就注定了要与不等式联系在一起。
高考精题
1.下列四个函数中,以π为最小正周期,且在区间 上为减函数的是( )。
A、y=cos2x B、y=2|sinx| C、 D、y=-cotx
解:y=cos2x, ,周期是π,在区间 上是增函数,
y=2|sinx|,周期是π,在区间 上是减函数,
,至少可以判断,在区间 上不是减函数,
y=-cotx,在区间 上是增函数,∴应选B。
2.函数y=x+sin|x|, x∈[-π,π]的大致图象是( )。
解:由函数的奇偶性(非奇非偶)及特殊点的坐标先删去A、B、D。∴ 应选C。
3.设函数f(x)=sin2x,若f(x+t)是偶函数,则t的一个可能值是___。
解:画出f(x)=sin2x的草图,不难看出将图像向左水平移 ,就可得到关于y轴对称的图像,
∴ 应填 。
4. 函数y=-xcosx的部分图像是( )。
解:∵ f(x)=-xcosx,∴ f(-x)=-(-x)cos(-x)=xcosx=-f(x),
那么f(x)是奇函数(x∈R),可在B、D中选,
又∵ 设图像上一点 ,在x轴下方,
∴ 应选D。
5.已知函数f(x)=x2+2x·tanθ-1, ,其中 。
(1)当 时,求函数f(x)的最大值与最小值;
(2)求θ的取值范围,使y=f(x)在区间 上是单调函数。
解:(1)当 时, ,
∴ 时,f(x)的最小值为 ,
x=-1时,f(x)的最大值为 。
(2)函数f(x)=(x+tanθ)2-1-tan2θ图像的对称轴为x=-tanθ,
∵ y=f(x)在区间[-1, ]上是单调函数,
∴ -tanθ≤-1或 ,
即tanθ≥1或tanθ≤ ,
因此,θ的取值范围是 。
评注:本题是二次函数与三角函数基本知识的综合题,问题(1)解中,得到二次函数的解析式后,要注意区间端点处的函数值与该函数的最值的正确比较,加以取舍。
第(2)问中,依题设f(x)在区间 上是单调函数,要分类考虑,若是单调递增,则-tanθ≤-1,若是单调递减,则 ,这一步是解题的关键,也是难点。
6.已知函数 x∈R。
(I)当函数y取得最大值时,求自变量x的集合;
(II)该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?
解:(I)
y取得最大值必须且只需
即 k∈Z。
所以当函数y取得最大值时,自变量x的集合为 .
(II)将函数y=sinx依次进行如下变换:
(i)把函数y=sinx的图像向左平移 ,得到函数 的图像;
(ii)把得到的图像上各点横坐标缩短到原来的 倍(纵坐标不变),得到函数 的图像;
(iii)把得到的图像上各点纵坐标缩短到原来的 倍(横坐标不变),得到函数 的图像;
(IV)把得到的图像向上平移 个单位长度,得到函数 的图像;
综上得到函数 的图像。
评注:应用三角公式,将已知函数式化成一个角[即 ]的简单函数解析式,便可讨论其最值,本题的解答以相应的图像变换给以详细说明,要理解掌握。
下一篇:高考常考词汇辨析_高考差距词汇