您现在的位置是: 首页 > 分数线 分数线

2014数学高考题,2014高考数学卷

tamoadmin 2024-06-10 人已围观

简介1.2014高考新课标全国二卷理科数学第24题详细过程2.2014年 天津文科 高考数学19题 已知函数f(x)=x^2-2/3ax^3(a>0),x属于R.3.2014山东高考数学理科第19题:已知等差数列an的公差为2,前n项和为sn,且s1,s2,s4成等比数列4.2014年统一高考数学试卷理科新课标Ⅱ的最后一题24题,题目如下。要思路和解题过程~5.2014年高考理科数学试题全国新课标 第

1.2014高考新课标全国二卷理科数学第24题详细过程

2.2014年 天津文科 高考数学19题 已知函数f(x)=x^2-2/3ax^3(a>0),x属于R.

3.2014山东高考数学理科第19题:已知等差数列an的公差为2,前n项和为sn,且s1,s2,s4成等比数列

4.2014年统一高考数学试卷理科新课标Ⅱ的最后一题24题,题目如下。要思路和解题过程~

5.2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,

2014数学高考题,2014高考数学卷

8.从正方体六个面的对角线中任取两条作为一对,学科网其中所成的角为 的共有( )

A.24对 B.30对 C.48对 D.60对

9.若函数 的最小值为3,则实数 的值为( )

A.5或8 B. 或5 C. 或 D. 或8

10.在平面直角坐标系 中,已知向量 点 满足 .曲线 ,区域zxxk .若 为两段分离的曲线,则( )

A. B. C. D.

第 卷(非选择题 共100分)

二.选择题:本大题共5小题,每小题5分,共25分.

11.若将函数 的图像向右平移 个单位,所得图像关于 轴对称, 则 的最小正值是________.

12.数列 是等差数列,若 , , 构成学科网公比为 的等比数列,则

________.

(13)设 是大于1的自然数, 的展开式为 .若点 的位置如图所示,则

(14)设 分别是椭圆 的左、右焦点,过点 的直线交椭圆 于 两点,若 轴,则椭圆 的方程为__________

(15)已知两个不相等的非零向量 两组向量 和 均由2个 和3个 排列而成.记 ,学科网 表示 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).

① 有5个不同的值.

②若 则 与 无关.

③若 则 与 无关.

④若 ,则 .学科网

⑤若 则 与 的夹角为

三.解答题:本大题共6小题,共75分.解答应写出文子说明、证明学科网过程或演算步骤.解答写在答题卡上的指定区域内.

16.设 的内角 所对边的长分别是 ,且

(1)求 的值;

(2)求 的值.

17(本小题满分12分)

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为 ,乙获胜的概率为 ,各局比赛结果相互独立.

(1)求甲在4局以内(含4局)赢得比赛的概率;

(2)记 为比赛决出胜负时的总局数,求 的分布列和均值(数学期望)

18(本小题满分12分)

设函数 其中 .

(1)讨论 在其定义域上的单调性;

(2)当 时,求 取得值和最小值时的 的值.

(19)(本小题满分13分)

如图,已知两条抛物线 和 ,过原点 的两条直线 和 , 与 分别交于 两点, 与 分别交于 两点.

(1)证明:

(2)过原点 作直线 (异于 , )与 分别交于 两点。记学科网 与 的面积分别为 与 ,求 的值.

(20)(本题满分13分)

如图,四棱柱 中, 底面 .四边形 为梯形, ,且 .过 三点的平面记为 , 与 的交点为 .

(1)证明: 为 的中点;

(2)求此四棱柱被平面 所分成上下两部分的体积之比;

(3)若 , ,梯形学科网 的面积为6,求平面 与底面 所成二面角大小.

(21) (本小题满分13分)

设实数 ,整数 , .

(I)证明:当 且 时, ;

(II)数列 满足 , ,证明:学科网

2014高考新课标全国二卷理科数学第24题详细过程

这题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.

设BD与AC的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;第二问通过AP=1,AD根号3,三棱锥P-ABD体积V=根号3/4,求出AB,作AH⊥PB角PB与H。

解: (1)证明:设BD与AC的交点为O,连结EO,

∵ABCD是矩形,∴O为BD中点,这是详细答案你看下。有详细的解答过程及分析。四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点。(1)证明:PB∥平面AEC;(2)设AP=1,AD=根号3,三棱锥P-ABD体积V=根号3/4.求A到平面PBC距离。

你自己琢磨下答案,不明白可以继续问我哦,加油~有帮助的话希望能给你个采纳哦,祝你学习进步!

2014年 天津文科 高考数学19题 已知函数f(x)=x^2-2/3ax^3(a>0),x属于R.

解答:

分析:

此题是选修4-5:不等式选讲的题目,考察了绝对值不等式的应用,分类讨论思想。

第一小问,直接运用绝对值不等式即可

第二小问,令x=3后,可以看作解一个关于a的绝对值不等式

解此类绝对值不等式,关键在于讨论a的范围从而去绝对值

由于a>0,3+1/a=0的零点是-1,3-a的零点是3

所以只需以3为界去绝对值,解去绝对值后的不等式,最后对所以的情况取并集即可。

2014山东高考数学理科第19题:已知等差数列an的公差为2,前n项和为sn,且s1,s2,s4成等比数列

利用导数可以求出函数的单调区间和极值;解决取值范围问题,很多时候要进行等价转化,分类讨论

这个题难度很大,综合性也很强,答案在这里已知函数f(x)=x^2-2/3ax^3(a>0),x属于R.

(1)求f(x)的单调区间和极值;

(2)若对于任意的x1属于(2,+∞),都存在x2属于(1,+∞),使得f(x1)×f(x2)=1,求a的取值范围。希望能采纳哦,祝你学习进步哦~

2014年统一高考数学试卷理科新课标Ⅱ的最后一题24题,题目如下。要思路和解题过程~

解bn=(-1)^(n-1)*4n/an*a(n+1)

=(-1)^(n-1)*4n/(2n-1)*(2n+1)

=(-1)^(n-1)*[((2n+1)+(2n-1))/(2n-1)*(2n+1)]

=(-1)^(n-1)*[(2n+1)/(2n-1)*(2n+1)+(2n-1)/(2n-1)*(2n+1)]

=(-1)^(n-1)*[1/(2n-1)+1/(2n+1)]

2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,

这个题主要考察了绝对值三角不等时,绝对值不等式的解法,体现了转化,分类讨论的数学思想,属于中档题.这个题目虽然短,但是难度也不小。下面是答案,你仔细看看。不明白的赶紧问哦

答案在这里啦函数f(x)=|x+1/a |+|x-a|(a>0).

(Ⅰ)证明:f(x)≥2;

(Ⅱ)若f(3)<5,求a的取值范围?

加油~ 有帮助的话,希望能够采纳哦!

由第二问,设e^(x/2)=m,可以得到g(x)的导数是:(m-1/m)^2*{2(m+1/m)^2-4b},令g(x)的导数为0,可以得到:1,x=0时,g(x)的导数为0,g(x)为0;2,m1=((2b)^0.5-(2b-4)^0.5)/2,m2=((2b)^0.5+(2b-4)^0.5)/2;如果m1<m<m2时,导数小于0,而m1<1,m2>1,如果换算成x的定义域的话,x1<0,x2>0,所以有函数g(x)在0~x2之间是小于零的。我们要求ln2的值,已知2^0.5的值,所以将x2的值定为特殊值,由e^(x/2)=m2解出x=2lnm2=ln(m2)^2=ln(b-1+(b*b-2b)^0.5);夹逼ln2.将ln2^0.5带入g(x),当b取不同值的时候,可以得到不等式,同时考虑带入2^0.5的值,x=ln2^0.5

文章标签: # 10px # 0px # font