您现在的位置是: 首页 > 专业报考 专业报考

高考答案是什么,高考你的答案

tamoadmin 2024-05-14 人已围观

简介高考试卷试题及答案天上不会掉这种馅饼的一,高考卷子是量产 你的有 别人也有 二,高考试卷,自打印刷出来是封存的 没有人有权利打开三,回答你的问题,有答案的话 要是铅字 上缴 对你没好处 如果手写的 呆到差不多时间 写上名字交卷高考试卷试题及答案第一,高考很重要,一定要珍惜。对于很多人而言,高考可能真的决定了他的后半生,毕竟去到了不一样的平台,未来可能面对的机会和挑战也会不同。所以即便是高

  1. 高考试卷试题及答案

天上不会掉这种馅饼的

高考答案是什么,高考你的答案

一,高考卷子是量产 你的有 别人也有

二,高考试卷,自打印刷出来是封存的 没有人有权利打开

三,回答你的问题,有答案的话 要是铅字 上缴 对你没好处 如果手写的 呆到差不多时间 写上名字交卷

高考试卷试题及答案

第一,高考很重要,一定要珍惜。对于很多人而言,高考可能真的决定了他的后半生,毕竟去到了不一样的平台,未来可能面对的机会和挑战也会不同。所以即便是高考后我们才明白,高考的重要性,但也是没有办法的。因为人总是后知后觉,但世上又没有真正的后悔药。在高考后我真切的感受到高考对于我人生的重要性,但是却又无可奈何。

第二,考得好不如填得好和选得好。选专业和填报志愿,事实上不比考试容易,首先你得有明确的目标,其次还得收集各种各样的信息来做比较等等。往往同一个分数线段的人,最后被录取的结果却千差万别。有的人选择宁愿在985和211的大学里读非常冷门的专业,有的则选择在双非大学里王牌专业。就是这样的一个选择,最后结果可能机会有很大的差别。人生可能就此改变,对于同一个分数段的人而言,考得好当真不如选得好。

第三,高考是个分界线,以后的所有事都不比高考容易。很多学生都认为自己在备考的过程中受了天大的折磨和痛苦,但事实上,在未来你可能会意识到高考备考的这三年是你人生中最充实和简单的三年。因为这三年你有明确的目标,每天有老师监督和同学激励,生活有规律和计划性。但当你进入大学和参加工作以后,就会发现生活一团乱麻。

第四,无论考上了什么大学,之后的人生都要很努力才行。通过高考有的人上了满意的学校,有的人可能退而求其次。但都不要忘了高考虽然重要,但努力才应该是人生的常态。上大学不是人生的目的地,好好努力过一生才是最重要的事情。

2011年普通高等学校招生全国统一考试(湖北卷)

数学试题(文史类)

本试题卷共4页,三大题21小题。全卷满分150分,考试用时120分钟。

★祝考试顺利★

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上。并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5毫米黑色黑水签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知 则

A. B.

C. D.

2.若向量 ,则2a+b与 的夹角等于

A. B. C. D.

3.若定义在R上的偶函数 和奇函数 满足 ,则 =

A. B. C. D.

4.将两个顶点在抛物线 上,另一个顶点是此抛物线焦点的正三角形个数记为 ,则

A. B.

C. D.

5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间 内的频数为

A.18 B.36

C.54 D.72

6.已知函数 ,若 ,则x的取值范围为

A. B.

C. D.

7.设球的体积为 ,它的内接正方体的体积为 ,下列说法中最合适的是

A. 比 大约多一半 B. 比 大约多两倍半

C. 比 大约多一倍 D. 比 大约多一倍半

8.直线 与不等式组 表示的平面区域的公共点有

A.0个 B.1个 C.2个 D.无数个

9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为

A.1升 B. 升 C. 升 D. 升

10.若实数a,b满足 ,且 ,则称a与b互补,记 那么 是a与b互补的

A.必要而不充分的条件 B.充分而不必要的条件

C.充要条件 D.既不充分也不必要的条件

二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分。

11.某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。

12. 的展开式中含 的项的系数为__________。(结果用数值表示)

13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________。(结果用最简分数表示)

14.过点(—1,—2)的直线l被圆 截得的弦长为 ,则直线l的斜率为__________。

15.里氏震级M的计算公式为: ,其中A是测震仪记录的地震曲线的最大振幅, 是相应的标准地震的振幅。假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为 级;9级地震的最大振幅是5级地震最大振幅的 倍。

三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

设 的内角A、B、C所对的边分别为a、b、c,已知

(I) 求 的周长;

(II)求 的值。

17.(本小题满分12分)

成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列 中的 、 、 。

(I) 求数列 的通项公式;

(II) 数列 的前n项和为 ,求证:数列 是等比数列。

18.(本小题满分12分)

如图,已知正三棱柱 - 的底面边长为2,侧棱长为 ,点E在侧棱 上,点F在侧棱 上,且 , .

(I) 求证: ;

(II) 求二面角 的大小。

19.(本小题满分12分)

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当 时,车流速度v是车流密度x的一次函数。

(I)当 时,求函数v(x)的表达式;

(II)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值。(精确到1辆/小时)。

20.(本小题满分13分)

设函数 , ,其中 ,a、b为常数,已知曲线 与 在点(2,0)处有相同的切线l。

(I) 求a、b的值,并写出切线l的方程;

(II)若方程 有三个互不相同的实根0、 、 ,其中 ,且对任意的 , 恒成立,求实数m的取值范围。

21.(本小题满分14分)

平面内与两定点 、 ( )连线的斜率之积等于非零常数m的点的轨迹,加上 、A2 两点所成的曲线C可以是圆、椭圆或双曲线。

(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;

(Ⅱ)当 时,对应的曲线为 ;对给定的 ,对应的曲线为 ,设 、 是 的两个焦点。试问:在 上,是否存在点 ,使得△ 的面积 。若存在,求 的值;若不存在,请说明理由。

参考答案

一、选择题:本题主要考查基础知识和基本运算。每小题5分,满分50分。

A卷:1—5ACDCB 6—10ADBBC

B卷:1—5DCABC 6—10ADBBC

二、填空题:本题主要考查基础知识和基本运算,每小题5分,满分25分。

11.20 12.17 13. 14.1或 15.6,10000

三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤。

16.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分12分)

解:(Ⅰ)

的周长为

(Ⅱ)

,故A为锐角,

17.本小题主要考查等差数列,等比数列及其求和公式等基础知识,同时考查基本运算能力。(满分12分)

解:(Ⅰ)设成等差数列的三个正数分别为

依题意,得

所以 中的 依次为

依题意,有 (舍去)

故 的第3项为5,公比为2。

所以 是以 为首项,2为以比的等比数列,其通项公式为

(Ⅱ)数列 的前 项和 ,即

所以

因此 为首项,公比为2的等比数列。

18.本小题主要考查空间直线与平面的位置关系和二面角的求法,同时考查空间想象能力和推理论证能力。(满分12分)

解法1:(Ⅰ)由已知可得

于是有

所以

(Ⅱ)在 中,由(Ⅰ)可得

于是有EF2+CF2=CE2,所以

又由(Ⅰ)知CF C1E,且 ,所以CF 平面C1EF,

又 平面C1EF,故CF C1F。

于是 即为二面角E—CF—C1的平面角。

由(Ⅰ)知 是等腰直角三角形,所以 ,即所求二面角E—CF—C1的大小为 。

解法2:建立如图所示的空间直角坐标系,则由已知可得

(Ⅰ)

(Ⅱ) ,设平面CEF的一个法向量为

设侧面BC1的一个法向量为

设二面角E—CF—C1的大小为θ,于是由θ为锐角可得

,所以

即所求二面角E—CF—C1的大小为 。

19.本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)

解:(Ⅰ)由题意:当 ;当

再由已知得

故函数 的表达式为

(Ⅱ)依题意并由(Ⅰ)可得

当 为增函数,故当 时,其最大值为60×20=1200;

当 时,

当且仅当 ,即 时,等号成立。

所以,当 在区间[20,200]上取得最大值

综上,当 时, 在区间[0,200]上取得最大值 。

即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。

20.本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)

解:(Ⅰ)

由于曲线 在点(2,0)处有相同的切线,

故有

由此得

所以 ,切线 的方程为

(Ⅱ)由(Ⅰ)得 ,所以

依题意,方程 有三个互不相同的实数 ,

故 是方程 的两相异的实根。

所以

又对任意的 成立,

特别地,取 时, 成立,得

由韦达定理,可得

对任意的

所以函数 的最大值为0。

于是当 时,对任意的 恒成立,

综上, 的取值范围是

20.本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)

解:(I)设动点为M,其坐标为 ,

当 时,由条件可得

即 ,

又 的坐标满足

故依题意,曲线C的方程为

当 曲线C的方程为 是焦点在y轴上的椭圆;

当 时,曲线C的方程为 ,C是圆心在原点的圆;

当 时,曲线C的方程为 ,C是焦点在x轴上的椭圆;

当 时,曲线C的方程为 C是焦点在x轴上的双曲线。

(II)由(I)知,当m=-1时,C1的方程为

当 时,

C2的两个焦点分别为

对于给定的 ,

C1上存在点 使得 的充要条件是

由①得 由②得

或 时,

存在点N,使S=|m|a2;

或 时,

不存在满足条件的点N,

当 时,

由 ,

可得

令 ,

则由 ,

从而 ,

于是由 ,

可得

综上可得:

当 时,在C1上,存在点N,使得

当 时,在C1上,存在点N,使得

当 时,在C1上,不存在满足条件的点N。

文章标签: # 高考 # 满分 # 所以