您现在的位置是: 首页 > 专业报考 专业报考
2006高考数学试卷-2006高考数学试卷真题2024
tamoadmin 2024-08-15 人已围观
简介1.数学导数问题~是河南河北等地2006年的高考题2.急急急…我要2006年全国一高考数学的答案 别给我链接 我用手机看了 再加分!!3.2006年有多少套数学高考题4.2006年江西高考理科数学怎么样数学导数问题~是河南河北等地2006年的高考题f(x)=x3-ax2+(a2-1)f(x)‘=3x2-2ax=(3-2a)x增函数代表导数大于零(3-2a)x>0由已知得在[0,1]区间内为减
1.数学导数问题~是河南河北等地2006年的高考题
2.急急急…我要2006年全国一高考数学的答案 别给我链接 我用手机看了 再加分!!
3.2006年有多少套数学高考题
4.2006年江西高考理科数学怎么样
数学导数问题~是河南河北等地2006年的高考题
f(x)=x3-ax2+(a2-1)
f(x)'=3x2-2ax=(3-2a)x
增函数代表导数大于零
(3-2a)x>0
由已知得
在[0,1]区间内为减函数,往下做就得结果.
急急急…我要2006年全国一高考数学的答案 别给我链接 我用手机看了 再加分!!
一、选择题: 1.B 2.D 3.A 4.B 5.C 6.B 7.C 8.A 9.D 10.B 11.B 12.B
二、填空题: 13. π3 14. 11 15. 2400 16. π6
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
17.解: 由A+B+C=π, 得B+C2 = π2 -A2 , 所以有cosB+C2 =sinA2 .
cosA+2cosB+C2 =cosA+2sinA2 =1-2sin2A2 + 2sinA2
=-2(sinA2 - 12)2+ 32
当sinA2 = 12 , 即A=π3 时, cosA+2cosB+C2取得最大值为32
18.解: (1)设Ai表示“一个试验组中,服用A有效的小鼠有i只" , i=0,1,2,
Bi表示“一个试验组中,服用B有效的小鼠有i只" , i=0,1,2,
依题意有: P(A1)=2×13×23 = 49, P(A2)=23 ×23 = 49 . P(B0)=12 ×12 = 14,
P(B1)=2×12 ×12 = 12 , 所求概率为: P=P(B0?A1)+P(B0?A2)+P(B1?A2)
= 14×49 + 14×49 + 12×49 = 49
(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,49) . P(ξ=0)=(59)3= 125729 , P(ξ=1)=C31×49×(59)2=100243
, P(ξ=2)=C32×(49)2×59 = 80243 , P(ξ=3)=( 49)3= 64729
ξ 0 1 2 3
P 125729
100243
80243
64729
ξ的分布列为:
数学期望: Eξ=3×49 = 43 .
19.解: (Ⅰ)由已知l2⊥MN, l2⊥l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN为AC在平面ABN内的射影.
∴AC⊥NB
(Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.
∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连结BH,∠NBH为NB与平面ABC所成的角.
在Rt△NHB中,cos∠NBH= HBNB = 33AB22AB = 63 .
20.解: 椭圆方程可写为: y2a2 + x2b2 =1 式中a>b>0 , 且 a2-b2 =33a =32 得a2=4,b2=1,所以曲线C的方程为: x2+ y24 =1 (x>0,y>0). y=21-x2 (0<x<1) y '=- 2x1-x2
设P(x0,y0),因P在C上,有0<x0<1, y0=21-x02 , y '|x=x0= - 4x0y0 ,得切线AB的方程为:
y=- 4x0y0 (x-x0)+y0 . 设A(x,0)和B(0,y),由切线方程得 x=1x0 , y= 4y0 .
由OM→=OA→ +OB→得M的坐标为(x,y), 由x0,y0满足C的方程,得点M的轨迹方程为:
1x2 + 4y2 =1 (x>1,y>2)
(Ⅱ)| OM→|2= x2+y2, y2= 41-1x2 =4+ 4x2-1 ,
∴| OM→|2= x2-1+4x2-1+5≥4+5=9.且当x2-1=4x2-1 ,即x=3>1时,上式取等号.
故|OM→|的最小值为3.
21.解(Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).对f(x)求导数得 f '(x)= ax2+2-a(1-x)2 e-ax.
(ⅰ)当a=2时, f '(x)= 2x2(1-x)2 e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).为增函数.
(ⅱ)当0<a<2时, f '(x)>0, f(x)在(-∞,1), (1,+∞)为增函数.
(ⅲ)当a>2时, 0<a-2a<1, 令f '(x)=0 ,解得x1= - a-2a, x2= a-2a .
当x变化时, f '(x)和f(x)的变化情况如下表:
x (-∞, -a-2a)
(-a-2a,a-2a)
(a-2a,1)
(1,+∞)
f '(x) + - + +
f(x) ↗ ↘ ↗ ↗
f(x)在(-∞, -a-2a), (a-2a,1), (1,+∞)为增函数, f(x)在(-a-2a,a-2a)为减函数.
(Ⅱ)(ⅰ)当0<a≤2时, 由(Ⅰ)知: 对任意x∈(0,1)恒有f(x)>f(0)=1.
(ⅱ)当a>2时, 取x0= 12 a-2a∈(0,1),则由(Ⅰ)知 f(x0)<f(0)=1
(ⅲ)当a≤0时, 对任意x∈(0,1),恒有1+x1-x >1且e-ax≥1,得
f(x)= 1+x1-xe-ax≥1+x1-x >1. 综上当且仅当a∈(-∞,2]时,对任意x∈(0,1)恒有f(x)>1.
22.解: (Ⅰ)由 Sn=43an-13×2n+1+23, n=1,2,3,… , ① 得 a1=S1= 43a1-13×4+23 所以a1=2.
再由①有 Sn-1=43an-1-13×2n+23, n=2,3,4,…
将①和②相减得: an=Sn-Sn-1= 43(an-an-1)-13×(2n+1-2n),n=2,3, …
整理得: an+2n=4(an-1+2n-1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,
(Ⅱ)将an=4n-2n代入①得 Sn= 43×(4n-2n)-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)
= 23×(2n+1-1)(2n-1)
Tn= 2nSn = 32×2n (2n+1-1)(2n-1) = 32×(12n-1 - 12n+1-1)
所以, = 32 12i-1 - 12i+1-1) = 32×(121-1 - 12i+1-1) < 32
2006年有多少套数学高考题
18套(同一省份的文\理试题不区分,当做一套)
广东、江苏、四川、安徽、湖北、湖南、江西、福建、浙江、陕西、山东、辽宁、上海、重庆、天津、北京、全国卷二( 黑龙江、吉林)、全国卷一(河北、河南、山西、广西、海南)
://.tl100/zt/2006zt/2006zt.htm
这里有2006年全国各科各卷的试题(附有部分听力)
2006年江西高考理科数学怎么样
还不错。2006年江西高考理科数学试卷中的应用题目相对较多,涉及到了生活和实际应用中的数学问题,考查了学生的实际应用能力和解决实际问题的能力,试卷在解题设计过程中注重了逻辑推理和思维能力,既考查了学生的记忆能力,更关注了学生的分析与综合能力。