您现在的位置是: 首页 > 专业报考 专业报考

2013天津高考数学理科,2013高考天津理数

tamoadmin 2024-07-16 人已围观

简介1.求一份天津初中数学的最新考纲2.理料是些什么科目3.2011高考天津理科数学第7题答案详解4.理科有哪些科目5.2017年天津高考具体科目时间安排 什么时候高考 数学试题点评 天津高考数学试卷点评:难度区分合理纵观天津高考数学试卷,笔者总体感觉在引入新鲜元素的同时也保留了天津本地稳定为主的特征,试题简洁明快,特色鲜明,平凡问题考验真功夫,在考查基础知识的同时注重对思想方法与能力的考查,试

1.求一份天津初中数学的最新考纲

2.理料是些什么科目

3.2011高考天津理科数学第7题答案详解

4.理科有哪些科目

5.2017年天津高考具体科目时间安排 什么时候高考

2013天津高考数学理科,2013高考天津理数

数学试题点评

天津高考数学试卷点评:难度区分合理

纵观天津高考数学试卷,笔者总体感觉在引入新鲜元素的同时也保留了天津本地稳定为主的特征,试题简洁明快,特色鲜明,平凡问题考验真功夫,在考查基础知识的同时注重对思想方法与能力的考查,试卷从试题的综合性、应用性和创新性的角度设计了由易到难的整体布局,试题的难易分布梯度较为平缓,试题情景设置合理,紧扣教材选题的同时也有着相当的创新要素,对于考生能力的要求进一步提高。与2013年相比,今年试卷总体难度稍有上升。

今年高考试卷结构上很好地秉承了天津高考以稳为主的命题思路,题型分布和考点设置上没有太大变化,严格依照《考试说明》中规定的考查内容,准确把握考查要求,对基础知识的考查既注重全面又突出重点。

试卷每种题型均设置了数量较多的基础题,许多试题都是考查单一的知识点或是在最基础的知识交汇点上设置,例如试卷中的选择题第1、2、3、4题,填空题第9、10、11、12题,这部分试题就是通常意义上的送分题,考查考生的基本功,需要牢牢把握。

试卷还注意确保支撑数学知识体系的主干内容(如三角函数与平面向量、概率统计、立体几何、解析几何、数列和函数与导数)占有较高的比例。

下表是近四年天津高考对各主干模块的考查分值统计:

通过上表可以看出,我们会发现三角函数等几大板块部分作为高中学习的绝对重点,几年来总体权重变化也不是特别明显。这也说明考生备考要依纲靠本,把精力更多地投放在考纲中的重点基础知识进行针对性复习。

今年高考试卷依然突出了考教一致这一原则。试卷中选题很多是源于教材,有些试题可看出与教材中的例题、练习和习题融合、改造的痕迹。这种做法有利于中学教学回归教材,

真正实现教什么考什么,同时也要求今后的同学在学习或是备考时注意到教材的重要作用,针对教材知识进行思考综合。

一、中等题目减少,强调通性通法

2014天津高考还有一个显著的特征是试卷中等题比重在下降,在保证良好区分度与选拔功能的前提下逐步回归基础。在试题命题上注重解题思路起点低,入口宽,更加强调“通性通法”在解题中的运用,要求运用基本概念分析问题,运用基本公式运算求解,利用基本定理推理论证,这些要求在各题中都有所体现,但各有不同侧重。同时,还要求考生利用基本数学思想方法寻找解题思路,如试卷第7题需就题目中的绝对值来进行分类讨论分析,而第14题则需用到转化化归思想将函数零点问题转化为函数图象交点问题来考虑。试卷强调通性通法,有利于引导中学数学教学回归基础。

二、注重能力立意,更加注重创新

天津数学试题体现了《考试说明》规定的各项能力要求,运算求解能力贯穿试卷始终,空间想象能力考查也达到一定深度,推理论证能力和抽象概括能力依然是考查的重点,在区分考生时起到重要作用。试卷中依然注重应用意识与创新意识的考查,如第16题,以实际问题为背景,考查概率知识在实际问题中的简单应用;第7、14、20题构思与设问较为新颖,考查了学生的创新意识。

除以上几点外,今年天津卷最大的亮点在于引入了创新题型。此类题型在北京等其他省市经过多年尝试与摸索已经初步成型,并已逐渐形成一种命题趋势。这类题型的特征在于题干比较抽象,需要考生具有较强的理解力,同时在准确理解题意的基础上综合使用相应的知识进行解题。如第19题,在数列问题中引入了集合环境,以全新的角度设置问题,重在考查考生对设问的理解。第1问枚举帮助考生理解题意,而第2问的新意在于要求考生构造二者差值,这是对其不等关系进行实质性分析的基础,而对于该差值的极端化处理则是放缩法证明不等式的基本技巧。此题要求考生具备较强的信息转译能力和严密论证能力,是很好的创新试题。在天津以往的高考中压轴题基本上还是以常规题型为主,很少涉及这类创新题。

由以上变化我们不难看出,今后的天津高考将会坚持并进一步提高对应用意识和创新意识的考查力度,这也要求本地考生在学习备考过程中要把眼界放开,在立足教材以及基础题型的同时要兼顾创新意识的培养。创新题型作为全国各地高考的一个趋势,今后也有望在天津高考中占据一席之地,也希望本地考生提前做好准备。

三、难度区分合理,有利于高考选拔

天津高考数学试题分布由易到难、循序渐进,选择填空题重点考查基础知识和基本运算,解答前四题重点考查综合运用基础知识及基本方法的能力,后两道重点考查学生的思维能力与探究能力。试卷整体难度分布比较平缓,计算量适中,各类试题也是由易到难,具有较好的梯度,从而实现高考择优录筛选考生的根本目的。

试卷中通过合理设置选择填空题的难度,达到了考查考生能力的目的;而通过解答题设问由浅入深的设置,也加强了对不同层次考生的区分功能,如第18、20题,都是上手相对容易,但深入又有一定难度。如第20题,题干简洁,设问大气,学生审题不会有什么困难,第1问要求考生清楚函数单调性与零点存在性之间的关系,并由此建立不等式确定参数取值范围;但后两问要探究两根之比与两根之和的变化规律,就需要考生考虑到由前问结论中参数的取值范围,将其与函数值域进行联系,从而根据零点处参数的等量关系进行函数构造。整体上第2问借助了第1问的结论,第3问又借助了第2问的结论,命题上环环相扣,逻辑清晰,要求考生具有较强的抽象概括、推理论证以及分析问题解决问题的能力,同时考查学生的直观意识,具有很好的区分度与选拔性。

以上是笔者对于今年高考数学试卷的一些分析,可以看出试卷本身十分成功,可见命题人出题时考虑问题之周全。对于考生来说,只要考前复习充分,考试心态平和,相信都能取得良好的结果。同时试卷中体现出的诸多特点与变化,也值得今后的考生多加注意和思考。

最后,笔者衷心祝愿广大学子能取得优异的成绩,考入理想的大学。同时希望决战2016高考的新高三同学能倍加努力,稳扎稳打,在高考中也取得优异的成绩

求一份天津初中数学的最新考纲

文科:英语150

语文150

文数150

文综:地理历史政治均100 总分300

理科:英语150

语文150

理数150

理综:物理120化学108生物72 总分 300

ps语文英语文理一样,数学文科容易。

end~

理料是些什么科目

初中学业考试大纲(数 学)

考试范围

《课程标准》(7~9年级)中:数与代数、空间与图形、统计与概率、课题学习四个部分的内容。

一、内容和目标要求

⒈初中毕业生数学学业考试的主要考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力;对数学的基本认识等。

⑴基础知识与基本技能考查的主要内容

了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些发生的概率。

⑵“数学活动过程”考查的主要方面

数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等。

⑶“数学思考”方面的考查应当关注的主要内容

学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:

能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象来表达问题、借助直观进行思考与推理;能意识到作一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论作合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略;能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能合乎逻辑地与他人交流等等。

⑷“解决问题能力”考查的主要方面:

能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略。

⑸“对数学的基本认识”考查的主要方面:

对数学内部统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);对数学与现实、或其他学科知识之间联系的认识等等。

⒉依据《课程标准》,考试要求的知识技能目标分为四个不同层次:了解(认识);理解;掌握;灵活运用。具体涵义如下:

了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。

理解:能描述对象的特征和由来;能明确阐述此对象与有关对象之间的区别和联系。

掌握:能在理解的基础上,把对象运用到新的情境中。

灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

数学活动水平的过程性目标分为三个不同层次:经历(感受);体验(体会);探索。具体涵义如下:

经历(感受):在特定的数学活动中,获得一些初步的经验。

体验(体会):参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。

探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其它对象的区别和联系。

以下对《课程标准》中,数与代数、空间与图形、统计与概率、课题学习四个领域的具体考试内容与要求分述如下:

数 与 代 数

(一)数与式

⒈有理数

考试内容:

有理数,数轴,相反数,数的绝对值,有理数的加、减、乘、除、乘方,加法运算律,乘法运算律,简单的混合运算。

考试要求:

(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

(2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算(以三步为主)。

(4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题。

⒉实数

考试内容:

无理数,实数,平方根,算术平方根,立方根,近似数和有效数字,

二次根式,二次根式的加、减、乘、除运算法则,简单的实数四则运算。

考试要求:

(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。

(4)能用有理数估计一个无理数的大致范围。

(5)了解近似数与有效数字的概念,会按要求求一个数的近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。

(6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算(不要求分母有理化)。

⒊代数式

考试内容:

代数式,代数式的值,合并同类项,去括号。

考试要求:

(1)了解用字母表示数的意义。

(2)能分析简单问题的数量关系,并用代数式表示。

(3)能解析一些简单代数式的实际背景或几何意义。

(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

(5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并。

⒋整式与分式

考试内容:

整式,整式加减,整式乘除,整数指数幂,科学记数法。

乘法公式: 。

因式分解,提公因式法,公式法。

分式、分式的基本性质,约分,通分,分式的加、减、乘、除运算。

考试要求:

(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。

(2)了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

(3)会推导乘法公式: ; ,了解公式的几何背景,并能进行简单计算。

(4)会用提公因式法和公式法(直接用公式不超过两次)进行因式分解(指数是正整数)。

(5)了解分式的概念,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。

(二)方程与不等式

⒈方程与方程组

考试内容:

方程和方程的解,一元一次方程及其解法,一元二次方程及其解法,二元一次方程组及其解法,可化为一元一次方程的分式方程(方程中的分式不超过两个)。

考试要求:

(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

(2)会用观察、画图或计算器等手段估计方程的解。

(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。

(4)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。

(5)能根据具体问题的实际意义,检验方程的解的合理性。

⒉不等式与不等式组

考试内容:

不等式,不等式的基本性质,不等式的解集,一元一次不等式及其解法,一元一次不等式组及其解法。

考试要求:

(1)能够根据具体问题中的大小关系了解不等式的意义,掌握不等式的基本性质。

(2)会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

(3)能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

(三)函数

⒈函数

考试内容:

平面直角坐标系,常量,变量,函数及其表示法。

考试要求:

(1)会从具体问题中寻找数量关系和变化规律。

(2)了解常量、变量、函数的意义,了解函数的三种表示方法,会用描点法画出函数的图象,能举出函数的实际例子。

(3)能结合图象对简单实际问题中的函数关系进行分析。

(4)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画某些实际问题中变量之间的关系。

(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测。

⒉一次函数

考试内容:

一次函数,一次函数的图象和性质,二元一次方程组的近似解。

考试要求:

(1)理解正比例函数、一次函数的意义,会根据已知条件确定一次函数表达式。

(2)会画一次函数的图象,根据一次函数的图象和解析式 ,理解其性质(k>0或k<0时图象的变化情况)。

(3)能根据一次函数的图象求二元一次方程组的近似解。

(4)能用一次函数解决实际问题。

⒊反比例函数

考试内容:

反比例函数,反比例函数图象及其性质。

考试要求:

(1)理解反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图象,根据图象和解析式 理解其性质(k>0或k<0时,图象的变化情况)。

(3)能用反比例函数解决某些实际问题。

⒋二次函数

考试内容:

二次函数及其图象,一元二次方程的近似解。

考试要求:

(1)理解二次函数和抛物线的有关概念,能对实际问题情境的分析确定二次函数的表达式。

(2)会用描点法画出二次函数的图象,能结合图象认识二次函数的性质。

(3)会根据公式确定图象的顶点、开口方向和对称轴(公式不要求推导和记忆),并能解决简单的实际问题。

(4)会利用二次函数的图象求一元二次方程的近似解。

空 间 与 图 形

(一)图形的认识

⒈点、线、面,角。

考试内容:

点、线、面、角、角平分线及其性质。

考试要求:

(1)在实际背景中认识,理解点、线、面、角的概念。

(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。

(3)掌握角平分线性质定理及逆定理。

⒉相交线与平行线

考试内容:

补角,余角,对顶角,垂线,点到直线的距离,线段垂直平分线及其性质,平行线,平行线之间的距离,两直线平行的判定及性质。

考试要求:

(1)了解补角、余角、对顶角的概念,知道等角的余角相等、等角的补角相等、对顶角相等。

(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。

(3)知道过一点有且仅有一条直线垂直于已知直线。

(4)掌握线段垂直平分线性质定理及逆定理。

(5)了解平行线的概念及平行线基本性质,

(6)掌握两直线平行的判定及性质。

(7)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(8)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

⒊三角形

考试内容:

三角形,三角形的角平分线、中线和高,三角形中位线,全等三角形、全等三角形的判定,等腰三角形的性质及判定。等边三角形的性质及判定。直角三角形的性质及判定。勾股定理。勾股定理的逆定理。

考试要求:

(1)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。

(2)掌握三角形中位线定理。

(3)了解全等三角形的概念,掌握两个三角形全等的判定定理。

(4)了解等腰三角形、直角三角形、等边三角形的有关概念,掌握等腰三角形、直角三角形、等边三角形的性质和判定定理;

(5)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。

⒋四边形

考试内容:

多边形,多边形的内角和与外角和,正多边形,平行四边形、矩形、菱形、正方形、梯形的概念和性质,平面图形的镶嵌。

考试要求:

(1)了解多边形的内角和与外角和公式,了解正多边形的概念。

(2)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。

(3)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。

(4)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。

(5)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

⒌圆

考试内容:

圆,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系,圆周角与圆心角的关系,三角形的内心和外心,切线的性质和判定,弧长,扇形的面积,圆锥的侧面积、全面积。

考试要求:

(1)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。

(2)了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。

(3)了解三角形的内心和外心。

(4)了解切线的概念、切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

(5)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。

⒍尺规作图

考试内容:

基本作图,利用基本作图作三角形,过一点、两点和不在同一直线上的三点作圆。

考试要求:

(1)能完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线。

(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。

(3)能过一点、两点和不在同一直线上的三点作圆。

(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。

⒎视图与投影

考试内容:

简单几何体的三视图,直棱柱、圆锥的侧面展开图,视点、视角,盲区,投影。

考试要求:

(1)会画简单几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)的示意图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。

(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。

(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装)。

(4)了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。

(5)知道物体阴影的形成,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。

(6)了解视点、视角及盲区的含义,能在简单的平面图和立体图中表示。

(7)了解中心投影和平行投影。

(二)图形与变换

⒈图形的轴对称、图形的平移、图形的旋转。

考试内容:

轴对称、平移、旋转。

考试要求:

(1)通过具体实例认识轴对称(或平移、旋转),探索它们的基本性质;

(2)能够按要求作出简单平面图形经过轴对称(或平移、旋转)后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;

(3)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称(或平移、旋转)的性质及其相关性质。

(4)利用轴对称(或平移、旋转)及其组合进行图案设计;认识和欣赏轴对称(或平移、旋转)在现实生活中的应用。

⒉图形的相似

考试内容:

比例的基本性质,线段的比,成比例线段,图形的相似及性质,三角形相似的条件,图形的位似,锐角三角函数,30 、45 、60 角的三角函数值。

考试要求:

(1)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割。

(2)通过实例认识图形的相似,了解相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。

(3)了解两个三角形相似的概念,掌握两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。

(6)通过实例认识锐角三角函数(sinA,cosA, tanA),知道30 、45 、60 角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。

(7)运用三角函数解决与直角三角形有关的简单实际问题。

(三)图形与坐标

考试内容:

平面直角坐标系。

考试要求:

(1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。

(2)能在方格纸上建立适当的直角坐标系,描述物体的位置。

(3)在同一直角坐标系中,感受图形变换后点的坐标的变化。

(4)灵活运用不同的方式确定物体的位置。

(四)图形与证明

⒈了解证明的含义

考试内容:

定义、命题、逆命题、定理,定理的证明,反证法。

考试要求:

(1)理解证明的必要性。

(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。

(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。

(4)理解反例的作用,知道利用反例可以证明一个命题是错误的。

(5)通过实例,体会反证法的含义。

(6)掌握用综合法证明的格式,体会证明的过程要步步有据。

⒉掌握证明的依据

考试内容:

一条直线截两条平行直线所得的同位角相等;

两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;

若两个三角形的两边及其夹角分别相等,则这两个三角形全等;

两个三角形的两角及其夹边分别相等,则这两个三角形全等;

两个三角形的三边分别相等,则这两个三角形全等;

全等三角形的对应边、对应角分别相等。

考试要求:

运用以上6条“基本事实”作为证明命题的依据。

⒊利用2中的基本事实证明下列命题

考试内容:

(1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。

(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。

(3)直角三角形全等的判定定理。

(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)。

(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交干一点(外心)。

(6)三角形中位线定理。

(7)等腰三角形、等边三角形、直角三角形的性质和判定定理。

(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。

考试要求:

(1)会利用2中的基本事实证明上述命题。

(2)会利用上述定理证明新的命题。

(3)练习和考试中与证明有关的题目难度,应与上述所列的命题的论证难度相当。

⒋通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。

统 计 与 概 率

⒈统计

考试内容:

数据,数据的收集、整理、描述和分析。

抽样,总体,个体,样本。

扇形统计图。

加权平均数,数据的集中程度与离散程度,极差和方差。

频数、频率,频数分布,频数分布表、直方图、折线图。

样本估计总体,样本的平均数、方差,总体的平均数、方差。

统计与决策,数据信息,统计在社会生活及科学领域中的应用。

考试要求:

(1)会收集、整理、描述和分析数据,能用计算器处理较为复杂的统计数据。

(2)了解抽样的必要性,能指出总体、个体、样本。知道不同的抽样可能得到不同的结果。

(3)会用扇形统计图表示数据。

(4)理解并会计算加权平均数,能根据具体问题,选择合适的统计量表示数据的集中程度。

(5)会探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度。

(6)理解频数、频率的概念,了解频数分布的意义和作用。会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。

(7)体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。

(8)能根据统计结果做出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。

(9)能根据问题查找相关资料,获得数据信息,会对日常生活中的某些数据发表自己的看法。

(10)能应用统计知识解决在社会生活及科学领域中一些简单的实际问题。

⒉概率

考试内容:

、的概率,列举法(包括列表、画树状图)计算简单的概率。

实验与发生的频率、大量重复实验与发生概率的估计。

运用概率知识解决实际问题。

考试要求:

(1)在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单发生的概率。

(2)通过实验,获得发生的频率;知道大量重复实验时频率可作为发生概率的估计值。

(3)能运用概率知识解决一些实际问题。

课 题 学 习

考试内容:

课题的提出、数学模型、问题解决。

数学知识的应用、研究问题的方法。

考试要求:

(1)结合实际,会提出、探讨一些具有挑战性的研究课题,经历“问题情境—建立模型—求解—解释与应用”的基本过程。进而体验从实际问题抽象出数学问题、建立数学模型,综合应用已有的知识解决问题的过程。加深理解相关的数学知识,发展思维能力。

(2)体验数学知识之间的内在联系、初步形成对数学整体性的认识。

(3)理解数学知识在实际问题中的应用,初步掌握一些研究问题的方法与经验。

六、考试形式、时间

考试用闭卷笔试形式。考试时间120分钟。

七、试题难度

合理安排试题难度结构。容易题、中档题和稍难题的比例约为8:1:1。考试合格率达80%。

八、试卷结构

全卷满分150分。试卷包含有填空题、选择题和解答题三种题型。三种题型的占分比例约为:填空题占25%,选择题占12.5%,解答题占62.5%。

填空题只要求直接填写结果,不必写出计算过程或推证过程;选择题是四选一型的单项选择题;解答题包括计算题、证明题、应用题、作图题等,解答题应写出文字说明、演算步骤、推证过程或按题目要求正确作图。应设计结合现实情境的开放性、探索性问题,杜绝人为编造的繁难计算题和证明题。

全卷总题量(含小题)控制在25~30题,较为适宜。

2011高考天津理科数学第7题答案详解

你好,理科学科主要有:数学、物理学、化学、生物学、地理学、计算机软件应用、技术与设计实践等,高考理科考试科目有语文、数学、外语、物理、化学、生物六科,全国大多数地区物理、化学、生物三科高考考理综卷,个别地区理综三科分开考,新高考改革试点地区,高考不分文理科。

2018年,全国卷高考理科满分是750分,语数外各150分,理综300分。理综中的物理110分、化学100分、生物90分。江苏高考满分是485分,语文160分、理数200分、英语120分、小高考最多加5分。北京、天津理综中的物理120分、化学100分、生物80分,其余分数跟全国卷一样

理科有哪些科目

答案C

解析将底数统一为5,令次方的数依次为m,n,p,m=log4(11.56)>log4(8)=1.5,p=log3(10/3)介于1和1.5之间,n=log4(3.6)<1,又5^x 为单调递增函数,∴a>c>b..

2017年天津高考具体科目时间安排 什么时候高考

高考理科考试科目有语文、数学、外语、物理、化学、生物六科,全国大多数地区物理、化学、生物三科高考考理综卷,个别地区理综三科分开考,浙江和上海是新高考改革试点地区,高考不分文理。

2018年高考使用全国卷的地区有25个,这些省市高考理科考四门,分别是语文、理数、外语、理综,满分750分。北京和天津高考虽然自主命题,但是高考理科考试科目与全国卷是相同的。

江苏高考理科考生考试科目有语文、数学、外语等科目,高考满分是480分。此外,江苏学生还要参加小高考,考选测科目。海南高考理科考试科目有语文、理数、英语、物理、化学、生物六科。浙江和上海高考不分文理,学生可以选考三科作为高考科目,而语数外三科是必考科目。

高考理科与文科试卷有两科是相同的,分别是语文和英语科目,江苏数学试卷也相同,因为江苏数学不分文数和理数,但是全国卷及北京天津卷数学是分文理的。

高考改革以后将不再分文理科,大部分地区考生都将从政史地物化生六门选考科目中选三门考试,也就是所谓的六选三,语数外三科作为考试科目不发生变化,而外语一年可以考两次,取考试成绩高的一次计入高考总分。浙江和上海地区2017年高考已经实行了这种改革方案,其他省市也将逐步实行新高考方案。

6月7日 上午9:00-11:30 语文

6月7日 下午3:00-5:00 文数/理数

6月8日 上午9:00-11:30 文综/理综

6月8日 下午3:00-5:00 外语(含听力)

文章标签: # 了解 # 高考 # 问题