您现在的位置是: 首页 > 专业报考 专业报考
陕西高考试卷数学题型分布_陕西高考试卷数学
tamoadmin 2024-06-28 人已围观
简介1.12陕西高考答案数学2.陕西高考数学是全国几卷3.2011年高考陕西数学(理)卷选择填空答案!急需!4.今年陕西高考数学难吗5.陕西高考数学难吗6.2011陕西高考数学卷7.今年陕西数学高考难吗陕西高考用的是全国乙卷。陕西省的高考是全国性高考之一,每年都会有数十万名考生参加。高考中涉及到的试卷类型也非常多,包括语文、数学、外语、物理、化学、生物等各个科目。以下将详细介绍陕西高考所涉及到的试卷类
1.12陕西高考答案数学
2.陕西高考数学是全国几卷
3.2011年高考陕西数学(理)卷选择填空答案!急需!
4.今年陕西高考数学难吗
5.陕西高考数学难吗
6.2011陕西高考数学卷
7.今年陕西数学高考难吗
陕西高考用的是全国乙卷。
陕西省的高考是全国性高考之一,每年都会有数十万名考生参加。高考中涉及到的试卷类型也非常多,包括语文、数学、外语、物理、化学、生物等各个科目。以下将详细介绍陕西高考所涉及到的试卷类型和相关信息。
1、语文试卷:
语文试卷是高考中必考科目之一,在陕西省的高考中也不例外。语文试卷主要考察考生的阅读理解、写作能力和语言表达能力等方面的能力,试卷内容较为广泛,考点涉及到文学知识、语言规范、现实生活等各个方面,需要考生具有扎实的基础知识和良好的思维能力。
2、数学试卷:
数学试卷是高考中另一门必考科目,在陕西省的高考中也是如此。数学试卷主要考察考生的数理思维能力、计算能力和解决问题的能力等方面的能力,试卷内容包括代数、函数、几何等各个方面,需要考生具有较强的数学素养和逻辑思维能力。
3、外语试卷:
外语试卷在高考中属于选考科目,在陕西省的高考中也是如此。外语试卷主要考察考生的英语阅读、听力、写作和口语等方面的能力,试卷内容从基础语法、词汇到实际应用领域广泛涉及各个方面,需要考生具备扎实的英语基础和较好的沟通表达能力。
4、物理试卷:
物理试卷在高考中属于选考科目,是陕西省高考中涉及到的重要科目之一。物理试卷主要考察考生对物理知识、实验方法和科学推理等方面的掌握程度,试卷内容包括力学、热学、光学等各个方面,需要考生具有严谨的思维能力和较强的计算能力。
5、化学试卷:
化学试卷在高考中属于选考科目,在陕西省的高考中也是如此。化学试卷主要考察考生对化学理论和实验技能等方面的掌握程度,试卷内容包括无机化学、有机化学、物理化学等各个方面,需要考生具有扎实的化学基础和较强的实验技能。
6、生物试卷:
生物试卷在高考中属于选考科目,在陕西省的高考中也是如此。生物试卷主要考察考生对生物学理论和实验技能等方面的掌握程度,试卷内容包括细胞生物学、遗传学、生态学等各个方面,需要考生具有扎实的生物学基础和良好的实验技能。
总之,陕西省的高考试卷类型非常多,每个科目都有其独特性和考查重点。考生应该全面了解自己所考科目的试卷形式和内容,根据考试要求合理制定备考计划,努力提高自己的知识水平和能力素质,从而取得更好的成绩。
12陕西高考答案数学
2023陕西高考数学是全国乙卷。
全国乙卷适用地区:甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西、河南、山西、江西、安徽。全国甲卷适用地区:西藏、四川、贵州、广西、云南。
高考试题全国卷简称全国卷,教育部考试中心组织命制的、适用于全国大部分省区的高考试卷,目的在于保证人才选拔的公正性。
2023陕西高考试卷难度分析
高考数学陕西卷从题型数量、分值分配上都和全国卷保持了一致,但从题目思维、计算角度看,相对较易。全国卷一贯的特点是来源于课本,明显高于课本的题目居多。有些考生可能不安于课堂系统复习,独自海量刷题,校外奔走赶课,这都极易造成学校课堂收获大打折扣。
高考数学时间分配原则
对于高考数学基础比较薄弱的同学,重在保简易题。鉴于高考数学客观题部分主要是对基础知识点的考察,可以稍稍放慢速度,把时间控制在50-60分钟,力求做到准确细致,尽量保证70分的基础分不丢分。
之后的三道简易高考数学解答题每题平均花10-15分钟完成。至于后三道高考数学大题,建议先阅读完题目,根据题意把可以联想到的常考知识点写出来,例如涉及函数单调性、切线斜率的可对函数求导,圆锥曲线的设出标准方程、数列里求出首项等等。如果没有其它的思路,不要耽误太多时间,把剩下的时间倒回去检查前面的题目。
高考数学题要认真仔细对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。所以,在高考数学实际解题时,应特别注意,审题要认真、仔细。
陕西高考数学是全国几卷
希望能帮到你,
绝密*启用前2012年普通高等学校招生全国统一考试理科数学
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.
3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第一卷
一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 ;,则 中所含元素
的个数为( )
解析选
, , , 共10个
(2)将 名教师, 名学生分成 个小组,分别安排到甲、乙两地参加社会实践活动,
每个小组由 名教师和 名学生组成,不同的安排方案共有( )
种 种 种 种
解析选
甲地由 名教师和 名学生: 种
(3)下面是关于复数 的四个命题:其中的真命题为( )
的共轭复数为 的虚部为
解析选
, , 的共轭复数为 , 的虚部为
(4)设 是椭圆 的左、右焦点, 为直线 上一点,
是底角为 的等腰三角形,则 的离心率为( )
解析选
是底角为 的等腰三角形
(5)已知 为等比数列, , ,则 ( )
解析选
, 或
(6)如果执行右边的程序框图,输入正整数 和
实数 ,输出 ,则( )
为 的和
为 的算术平均数
和 分别是 中最大的数和最小的数
和 分别是 中最小的数和最大的数
解析选
(7)如图,网格纸上小正方形的边长为 ,粗线画出的
是某几何体的三视图,则此几何体的体积为( )
解析选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
(8)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于
两点, ;则 的实轴长为( )
解析选
设 交 的准线 于
得:
(9)已知 ,函数 在 上单调递减。则 的取值范围是( )
解析选
不合题意 排除
合题意 排除
另: ,
得:
(10)已知函数 ;则 的图像大致为( )
解析选
得: 或 均有 排除
(11)已知三棱锥 的所有顶点都在球 的求面上, 是边长为 的正三角形,
为球 的直径,且 ;则此棱锥的体积为( )
解析选
的外接圆的半径 ,点 到面 的距离
为球 的直径 点 到面 的距离为
此棱锥的体积为
另: 排除
(12)设点 在曲线 上,点 在曲线 上,则 最小值为( )
解析选
函数 与函数 互为反函数,图象关于 对称
函数 上的点 到直线 的距离为
设函数
由图象关于 对称得: 最小值为
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分。
(13)已知向量 夹角为 ,且 ;则
解析
(14) 设 满足约束条件: ;则 的取值范围为
解析 的取值范围为
约束条件对应四边形 边际及内的区域:
则
(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3
正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从
正态分布 ,且各个元件能否正常相互独立,那么该部件的使用寿命
超过1000小时的概率为
解析使用寿命超过1000小时的概率为
三个电子元件的使用寿命均服从正态分布
得:三个电子元件的使用寿命超过1000小时的概率为
超过1000小时时元件1或元件2正常工作的概率
那么该部件的使用寿命超过1000小时的概率为
(16)数列 满足 ,则 的前 项和为
解析 的前 项和为
可证明:
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知 分别为 三个内角 的对边,
(1)求 (2)若 , 的面积为 ;求 。
解析(1)由正弦定理得:
(2)
解得: (l fx lby)
18.(本小题满分12分)
某花店每天以每枝 元的价格从农场购进若干枝玫瑰花,然后以每枝 元的价格出售,
如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进 枝玫瑰花,求当天的利润 (单位:元)关于当天需求量
(单位:枝, )的函数解析式。
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率。
(i)若花店一天购进 枝玫瑰花, 表示当天的利润(单位:元),求 的分布列,
数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由。
解析(1)当 时,
当 时,
得:
(2)(i) 可取 , ,
的分布列为
(ii)购进17枝时,当天的利润为
得:应购进17枝
(19)(本小题满分12分)
如图,直三棱柱 中, ,
是棱 的中点,
(1)证明:
(2)求二面角 的大小。
解析(1)在 中,
得:
同理:
得: 面
(2) 面
取 的中点 ,过点 作 于点 ,连接
,面 面 面
得:点 与点 重合
且 是二面角 的平面角
设 ,则 ,
既二面角 的大小为
(20)(本小题满分12分)
设抛物线 的焦点为 ,准线为 , ,已知以 为圆心,
为半径的圆 交 于 两点;
(1)若 , 的面积为 ;求 的值及圆 的方程;
(2)若 三点在同一直线 上,直线 与 平行,且 与 只有一个公共点,
求坐标原点到 距离的比值。
解析(1)由对称性知: 是等腰直角 ,斜边
点 到准线 的距离
圆 的方程为
(2)由对称性设 ,则
点 关于点 对称得:
得: ,直线
切点
直线
坐标原点到 距离的比值为 。(lfx lby)
(21)(本小题满分12分)
已知函数 满足满足 ;
(1)求 的解析式及单调区间;
(2)若 ,求 的最大值。
解析(1)
令 得:
得:
在 上单调递增
得: 的解析式为
且单调递增区间为 ,单调递减区间为
(2) 得
①当 时, 在 上单调递增
时, 与 矛盾
②当 时,
得:当 时,
令 ;则
当 时,
当 时, 的最大值为
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,
做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 分别为 边 的中点,直线 交
的外接圆于 两点,若 ,证明:
(1) ;
(2)
解析(1) ,
(2)
(23)本小题满分10分)选修4—4;坐标系与参数方程
已知曲线 的参数方程是 ,以坐标原点为极点, 轴的正半轴
为极轴建立坐标系,曲线 的坐标系方程是 ,正方形 的顶点都在 上,
且 依逆时针次序排列,点 的极坐标为
(1)求点 的直角坐标;
(2)设 为 上任意一点,求 的取值范围。
解析(1)点 的极坐标为
点 的直角坐标为
(2)设 ;则
(lfxlby)
(24)(本小题满分10分)选修 :不等式选讲
已知函数
(1)当 时,求不等式 的解集;
(2)若 的解集包含 ,求 的取值范围。
解析(1)当 时,
或 或
或
(2)原命题 在 上恒成立
在 上恒成立
在 上恒成立
2012年高考文科数学试题解析(全国课标)
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则
(A)AB (B)BA (C)A=B (D)A∩B=?
命题意图本题主要考查一元二次不等式解法与集合间关系,是简单题.
解析A=(-1,2),故BA,故选B.
(2)复数z= 的共轭复数是
(A) (B) (C) (D)
命题意图本题主要考查复数的除法运算与共轭复数的概念,是简单题.
解析∵ = = ,∴ 的共轭复数为 ,故选D.
(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线 y=x+1上,则这组样本数据的样本相关系数为
(A)-1 (B)0 (C) (D)1
命题意图本题主要考查样本的相关系数,是简单题.
解析有题设知,这组样本数据完全正相关,故其相关系数为1,故选D.
(4)设 , 是椭圆 : =1( > >0)的左、右焦点, 为直线 上一点,△ 是底角为 的等腰三角形,则 的离心率为
. . . .
命题意图本题主要考查椭圆的性质及数形结合思想,是简单题.
解析∵△ 是底角为 的等腰三角形,
∴ , ,∴ = ,∴ ,∴ = ,故选C.
(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则 的取值范围是
(A)(1-,2) (B)(0,2)
(C)(-1,2) (D)(0,1+)
命题意图本题主要考查简单线性规划解法,是简单题.
解析有题设知C(1+ ,2),作出直线 : ,平移直线 ,有图像知,直线 过B点时, =2,过C时, = ,∴ 取值范围为(1-,2),故选A.
(6)如果执行右边的程序框图,输入正整数 ( ≥2)和实数 , ,…, ,输出 , ,则
. + 为 , ,…, 的和
. 为 , ,…, 的算术平均数
. 和 分别为 , ,…, 中的最大数和最小数
. 和 分别为 , ,…, 中的最小数和最大数
命题意图本题主要考查框图表示算法的意义,是简单题.
解析由框图知其表示的算法是找N个数中的最大值和最小值, 和 分别为 , ,…, 中的最大数和最小数,故选C.
21世纪教育网(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为
.6 .9 .12 .18
命题意图本题主要考查简单几何体的三视图及体积计算,是简单题.
解析由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为 =9,故选B.
(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为
(A)π (B)4π (C)4π (D)6π
命题意图
解析
(9)已知 >0, ,直线 = 和 = 是函数 图像的两条相邻的对称轴,则 =
(A) (B) (C) (D)
命题意图本题主要考查三角函数的图像与性质,是中档题.
解析由题设知, = ,∴ =1,∴ = ( ),
∴ = ( ),∵ ,∴ = ,故选A.
(10)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 、 两点, = ,则 的实轴长为
. . .4 .8
命题意图本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.
解析由题设知抛物线的准线为: ,设等轴双曲线方程为: ,将 代入等轴双曲线方程解得 = ,∵ = ,∴ = ,解得 =2,
∴ 的实轴长为4,故选C.
(11)当0< ≤时, ,则a的 取值范围是
(A)(0,) (B)(,1) (C)(1,) (D)(,2)
命题意图本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题.
解析由指数函数与对数函数的图像知 ,解得 ,故选A.
(12)数列{ }满足 ,则{ }的前60项和为
(A)3690 (B)3660 (C)1845 (D)1830
命题意图本题主要考查灵活运用数列知识求数列问题能力,是难题.
解析法1有题设知
=1,① =3 ② =5 ③ =7, =9,
=11, =13, =15, =17, =19, ,
……
∴②-①得 =2,③+②得 =8,同理可得 =2, =24, =2, =40,…,
∴ , , ,…,是各项均为2的常数列, , , ,…是首项为8,公差为16的等差数列,
∴{ }的前60项和为 =1830.
法2可证明:
二.填空题:本大题共4小题,每小题5分。
(13)曲线 在点(1,1)处的切线方程为________
命题意图本题主要考查导数的几何意义与直线方程,是简单题.
解析∵ ,∴切线斜率为4,则切线方程为: .
(14)等比数列{ }的前n项和为Sn,若S3+3S2=0, 则公比 =_______
命题意图本题主要考查等比数列n项和公式,是简单题.
解析当 =1时, = , = ,由S3+3S2=0得 , =0,∴ =0与{ }是等比数列矛盾,故 ≠1,由S3+3S2=0得 , ,解得 =-2.
(15) 已知向量 , 夹角为 ,且| |=1,| |= ,则| |= .
命题意图.本题主要考查平面向量的数量积及其运算法则,是简单题.
解析∵| |= ,平方得 ,即 ,解得| |= 或 (舍)
(16)设函数 =的最大值为M,最小值为m,则M+m=____
命题意图本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.
解析 = ,
设 = = ,则 是奇函数,
∵ 最大值为M,最小值为 ,∴ 的最大值为M-1,最小值为 -1,
∴ , =2.
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知 , , 分别为 三个内角 , , 的对边, .
(Ⅰ)求 ;
(Ⅱ)若 =2, 的面积为 ,求 , .
命题意图本题主要考查正余弦定理应用,是简单题.
解析(Ⅰ)由 及正弦定理得
由于 ,所以 ,
又 ,故 .
(Ⅱ) 的面积 = = ,故 =4,
而 故 =8,解得 =2.
18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天 玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天 的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
命题意图本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.
解析(Ⅰ)当日需求量 时,利润 =85;
当日需求量 时,利润 ,
∴ 关于 的解析式为 ;
(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为
=76.4;
(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为
(19)(本小题满分12分)如图,三棱柱 中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(I) 证明:平面 ⊥平面
(Ⅱ)平面 分此棱柱为两部分,求这两部分体积的比.
命题意图本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
解析(Ⅰ)由题设知BC⊥ ,BC⊥AC, ,∴ 面 , 又∵ 面 ,∴ ,
由题设知 ,∴ = ,即 ,
又∵ , ∴ ⊥面 , ∵ 面 ,
∴面 ⊥面 ;
(Ⅱ)设棱锥 的体积为 , =1,由题意得, = = ,
由三棱柱 的体积 =1,
∴ =1:1, ∴平面 分此棱柱为两部分体积之比为1:1.
(20)(本小题满分12分)设抛物线 : ( >0)的焦点为 ,准线为 , 为 上一点,已知以 为圆心, 为半径的圆 交 于 , 两点.
(Ⅰ)若 , 的面积为 ,求 的值及圆 的方程;
(Ⅱ)若 , , 三点在同一条直线 上,直线 与 平行,且 与 只有一个公共点,求坐标原点到 , 距离的比值.
命题意图本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
解析设准线 于 轴的焦点为E,圆F的半径为 ,
则|FE|= , = ,E是BD的中点,
(Ⅰ) ∵ ,∴ = ,|BD|= ,
设A( , ),根据抛物线定义得,|FA|= ,
∵ 的面积为 ,∴ = = = ,解得 =2,
∴F(0,1), FA|= , ∴圆F的方程为: ;
(Ⅱ) 解析1∵ , , 三点在同一条直线 上, ∴ 是圆 的直径, ,
由抛物线定义知 ,∴ ,∴ 的斜率为 或- ,
∴直线 的方程为: ,∴原点到直线 的距离 = ,
设直线 的方程为: ,代入 得, ,
∵ 与 只有一个公共点, ∴ = ,∴ ,
∴直线 的方程为: ,∴原点到直线 的距离 = ,
∴坐标原点到 , 距离的比值为3.
解析2由对称性设 ,则
点 关于点 对称得:
得: ,直线
切点
直线
坐标原点到 距离的比值为 。
(21)(本小题满分12分)设函数f(x)= ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f?(x)+x+1>0,求k的最大值
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.
22. (本小题满分10分)选修4-1:几何选讲
如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:
(Ⅰ) CD=BC;
(Ⅱ)△BCD∽△GBD.
命题意图本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.
解析(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,
∵CF∥AB, ∴BCFD是平行四边形,
∴CF=BD=AD, 连结AF,∴ADCF是平行四边形,
∴CD=AF,
∵CF∥AB, ∴BC=AF, ∴CD=BC;
(Ⅱ) ∵FG∥BC,∴GB=CF,
由(Ⅰ)可知BD=CF,∴GB=BD,
∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD.
23. (本小题满分10分)选修4-4:坐标系与参数方程
已知曲线 的参数方程是 ( 是参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 :的极坐标方程是 =2,正方形ABCD的顶点都在 上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为 上任意一点,求 的取值范围.
命题意图本题考查了参数方程与极坐标,是容易题型.
解析(Ⅰ)由已知可得 , ,
, ,
即A(1, ),B(- ,1),C(―1,― ),D( ,-1),
(Ⅱ)设 ,令 = ,
则 = = ,
∵ ,∴ 的取值范围是[32,52].
24.(本小题满分10分)选修4-5:不等式选讲
已知函数 = .
(Ⅰ)当 时,求不等式 ≥3的解集;
(Ⅱ) 若 ≤ 的解集包含 ,求 的取值范围.
命题意图本题主要考查含绝对值不等式的解法,是简单题.
解析(Ⅰ)当 时, = ,
当 ≤2时,由 ≥3得 ,解得 ≤1;
当2< <3时, ≥3,无解;
当 ≥3时,由 ≥3得 ≥3,解得 ≥8,
∴ ≥3的解集为{ | ≤1或 ≥8};
(Ⅱ) ≤ ,
当 ∈[1,2]时, = =2,
∴ ,有条件得 且 ,即 ,
故满足条件的 的取值范围为[-3,0].
2011年高考陕西数学(理)卷选择填空答案!急需!
陕西高考数学使用全国Ⅱ卷。
如下:
1.全国卷,是教育部为未能自主命题的省份命题的高考试卷。随着高考改革政策的不断调整与变化,全国各省市高考使用全国卷的省市越来越多,那么2022年陕西高考使用全国几卷?2022年陕西高考使用全国几卷2022陕西高考采用全国乙卷。
2.全国乙卷适用地区:甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西、河南、山西、江西、安徽。高考全国卷不会因考题差别导致教材差别,一切都是遵照高考大纲命题的。高考后试卷不能拿走,高考试卷会密封后送到指定的阅卷场所,阅卷后的高考试卷属于高考档案的一种。
3.要存档保留一定年限的,考生是无法再次接触到自己的高考试卷的。2022年全国卷高考备考经验文艺学霸郑和惠:考过多少满分已经记不清了郑和惠走的是文艺路线,平时喜欢看各种各样的小说、杂文,J.R.R。托尔金的《魔戒》系列是她的最爱。
4.但除了文艺的一面,学霸在数学方面的天赋也绝对一流。“不是我夸张,是我真的不记得了。”说起自己考过多少次数学满分,郑和惠这样回答。与其他学生不同,郑和惠从来没参加过什么数学竞赛,也几乎没有上过补习班。
5.如果一定要为自己的成绩找个理由的话,郑和惠认为很大程度上得益于妈妈对她的时间管理。郑和惠说,自己刚开始对网络和电视感兴趣的时候,妈妈就开始限制她每周看电视和上网的时间,每周五、周六晚上各一个小时,内容不限。
6.因为看电视、上网的时间来之不易,久而久之,郑和惠对网上那些没营养的综艺节目失去了兴趣,把宝贵的上网时间全用在了刷外国**上,多年的积累让郑和惠的英语成绩也出类拔萃。除了时间管理,每次逛超市的时候,郑和惠的妈妈都会让她算买什么样的商品最划算。
今年陕西高考数学难吗
11. 1
12. 3或4
13. n+(n+1)+(n+2)+(3n-2)=(2n-1)的平方
14. 2000
15. 负无穷到-3U3到正无穷
4倍根号二
3
陕西高考数学难吗
陕西高考数学难度适中。
陕西省高考是普通难度,高考试卷用全国卷二,总分750分,分文科和理科,其他和全国卷一类似,只是试卷难度上略有差异。陕西是一个高考比较友好的地方,考生人数不算多,本省优秀的高校也比较多,比如西安交大,西工大,西北农林,西安电子科技大,陕西师范大学等,教育氛围浓厚,高校多,录取率还友好。
陕西2022年启动高考综合改革,在普通高中同步实施新课程、新教材,并将于2025年全面实施新高考。目前,陕西省新高考综合改革方案按照“3+1+2”模式已报教育部备案,经教育部评估通过后向全社会公布。
陕西共有各级各类学校15330所,在校学生831.92万人。面对全国高考综合改革的浪潮,陕西省将2021年作为学位建设攻坚年、内涵建设转折年,出台了进一步加强高考综合改革基础条件保障指导意见。
陕西高考数学试题一直要求较强的逻辑思维能力,而最近几年高考的着重点也有所改变,题目越来越生活化。陕西考生反馈,今年陕西高考数学试题的题目也是如此,考死公式和定理的时代看来已经过去了。
新高考对于全国卷来说,最大的特点就是灵活,在市面上看到的押题卷(尤其是最后一套)都是素养押题,而不是全国卷的逐题押,充分展示了数学素养的重要性,以往的模板式答题早已不复存在。
新高考的命题特点更倾向于母题创新,仔细研究今年的试题,大多数母题在以往的高考和教材冷门题型是有体现的,热门题型已经无法进入命题老师的法眼,这充分说明了对知识理解和运用的重要性。
全国各省份高考难度名次,主要分为五个梯队:
第一梯队包括河南和广东
第二梯队有6个省份,分别是:山西、广西、安徽、云南、四川、山东
第三梯队:甘肃、贵州、江苏、河北、江西、湖南、浙江、重庆
第四梯队:新疆、内蒙古、黑龙江、陕西、湖北、海南、福建
第五梯队:辽宁、吉林、宁夏、青海、西藏;第六梯队:天津,上海,北京。
2011陕西高考数学卷
陕西高考理科数学试题难度适中,陕西高考理科数学试卷总体来说不难,陕西高考理科数学的试题题型比较灵活,在考察陕西学生学习能力的同时,考察学生应用知识的能力,评估学生的基本技能,它还考察陕西学生适应不断变化的情况的能力。
陕西高考使用的是全国乙卷不是自主命题,总分750分,分文科和理科,其他和全国甲卷类似,只是试卷难度上略有差异。陕西高考2023年语文、数学、外语、文科综合(政治、历史、地理)或理科综合(物理、化学、生物)均使用全国乙卷。
陕西高考总分750分。陕西高考满分谨亏是750分,其中语文、文科数学、理科数学、外语单科满分均为150分,理科综合(理化生)、文科综合(政史地)满分为300分。传统高考地区的考生,采用的是“3+1”的模式,3代表语文、数学、外语,1代表文科综合或理科综合。
陕西拿返高考地区排名为20。全国各省高考难度总共分为五个模式,,分别为优惠模式、普祥敏神通模式、困难模式、噩梦模式、地狱模式,而陕西高考难度在全国来说,属于普通模式。
2023的高考试题难度可能会变大、虽然高考试题命题始终坚持稳中有变的原则,似乎稳定是主流,其实变化无处不在。高考试题难度灵活多变,低效率大量刷题没有效果,主要考查的是学生是否真的学会远离,吃透本质,从而以不变应万变。
教育发达程度不同的高考试卷难度也不同:教育不发达地区的考题通常会考一两点比较偏的的知识点,或者平常比较少见的题型,就比如今年的全国三卷。考生平常训练的方向是前者的方向,这就导致了今年的三卷难度大于一二卷。
2023高考志愿填报时间为6月26日,截止时间为7月31日。第一次志愿填报是6月26日9时至6月28日12时,考生填报艺术类本科批次志愿(含校考和统考阶段)、体育类本科批次志愿,以及提前本科批次志愿(含A、B阶段)。6月26日9时至6月30日17时,考生填报普通本科批次志愿(含A、B阶段)。
今年陕西数学高考难吗
今年陕西数学卷比较牛比
敢打乱先易后难的顺序,把解几居然放到第二个。说说题吧,选择的复数考察过难
没多少人知道几何意义.谁能想到会这么搞!还有选择题的函数
解几的难度比较小
!总之
选择题很难拿到45分
说填空吧
填空题比较正常
难度适宜
再说大题∶第一题
为简单题
纯秒杀的
第二题
圆
椭圆与直线
难度不大
但此题位置放此不合适
第三题
简洁明了
就九个字哈
这是去年四川的高考题,今年拿来很不合适
许多人做过就会
没做可能就不会
,就算做过谁会知道今年又来!我对此题很厌恶
出题人纯瓜皮
没本事
去年没出好
被批评了
今年就乱抄来点题
鄙视!剩下地就不说了
大家没考好就都没考好
估计一般水平地人在110左右
好学生在135以上
我是西工大实验班
大概估了130
就这样了
谢谢评论
难。2023年陕西高考数学使用的是乙卷,总体来说难度有所上升,纵观高考试题,试卷结构与往年新课标基本保持不变,还是坚持在稳定中求创新,重视对于高中数学基础知识、基本技能的考查,注重考查学生分析问题,解决问题的能力,考查数学思维能力,减少繁杂的数学运算,从解题走向解决问题,是高考数学的一大亮点。