您现在的位置是: 首页 > 专业报考 专业报考
数列高考题汇_数列高考数学
tamoadmin 2024-06-14 人已围观
简介1.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.2.两道数学题目 关于数列的 帮帮忙!3.这是一道数列题?4.求 高考数列各种主要题型解:(1)设公差为d,公比为q 由题意可知 S2=a1+a2=2a1+d=6+d S3=a1+a2+a3=3a1+3d=
1.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
2.两道数学题目 关于数列的 帮帮忙!
3.这是一道数列题?
4.求 高考数列各种主要题型
解:(1)设公差为d,公比为q
由题意可知
S2=a1+a2=2a1+d=6+d
S3=a1+a2+a3=3a1+3d=9+3d
b2=q b3=q^2
解方程组 q(6+d)=64
q^2(9+3d)=960
解得 d=2 或 d=-128/3(不合题意舍去)
q=8 q=40/3
所以{an}的通项公式为 an=3+2(n-1)
{bn}的通项公式 bn=q^(n-1)
由等差数列前n和的公式可知
S1=3,S2=8,S3=15,S4=24,....,S(n-1)=[(n-1)(n+1)], Sn=n(n+2)
所以
1/S1+1/S2+……+1/S(n-1)+1/Sn
=1/3+1/(2×4)+.....+1/[n(n+2)]
=1/2×2/3+1/2×(1/2-1/4)+....+1/2×[1/n-1/(n+2)]
=1/2[2/3+1/2-1/4+......+1/n-1/(n+2)]
=1/2[2/3-1/(n+1)-1/(n+2)]
=(n^2-3n+6)/(6n^2+18n+12)
高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
广东省2014年高考理科数学第19题答案如下:
(1)首先,由Sn的公式可以很容易的求出a1,因为S1=a1,带入到式子中,a1=2a2-7,同时,将n=2代入式子,则S2=a1+a2=4(15-a1-a2)-20,则a1+a2=8,将两式子联立,得a1=3,a2=5,因S3=15,故a3=7,所以a1=3、a2=5、a3=7。以上是第一问的标准解法。
(2)第二问是本题的难点,在解决数列问题时,有很多公式和技巧可以使用,本题则应用了最为普遍的解法:Sn-Sn-1=an,同样地,S(n+1)-Sn=a(n+1),将n+1和n代入Sn的通项公式中,得到如下图的公式:
很显然的,这个式子不是我们需要的通项公式,接下来我们就要利用其他条件了,观察第一问,根据a1=3、a2=5、a3=7,我们不难猜想,an=2n+1,但是猜想终归是猜想,我们需要进行证明,证明采用一种比较常规的证明方法:数学归纳法。
我们分为两种情况进行证明:①当n=1时,代入上面的式子(将中的式子命名为式子a)中,发现式子a符合2n+1这个式子,即证明当n=1时,确实满足an=2n+1。
②仅证明n=1是不可以的,我们需要证明当n=k(k属于n*时)仍然符合式子a,首先我们假设,n=k符合,然后证明n=k+1符合即可,假设n=k符合,则an=2k+1,那么这就是已知条件了,代入式子a,很容易导出,a(k+1)=2k+3=2(k+1)+1,假设n=k符合式子a,证明了n=k+1符合式子a,也就证明了an=2n+1是通项公式,本题作答结束。
本题运用的难点思想就是,需要假设n=k成立,然后证明n=k+1成立,可以这样想,当这个式子不断往后加1都是成立的,就说明这个式子不是只在某一部分符合,就像我们已知了a1、a2,a3,那么证明a4成立,然后已知a4成立,再证明a5成立,这样无穷尽的证明,发现只要k成立,k+1就成立,那么这个式子就是一个符合要求的通项公式。
两道数学题目 关于数列的 帮帮忙!
证明:两边同时加n得:An+n=2A(n-1)-2+2n
即An+n=2A(n-1)+2(n-1)
所以得(An+n)/[A(n-1)+(n-1)]=2
所以{An+n}是以2为首项,2为公比的等比数列
(1)an+n=2的n次幂
an=2的n次幂-n
(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)
=2(2的n次-1)-1/2·n(1+n)
这是一道数列题?
1.(1)
a(n)?-2na(n)-2=0
[a(n)-n]?=2+n?
a(n)-n=-√(2+n?)
a(n)=n-√(2+n?)
2.s(1)=a(1)=[(a(1)+1)?]/4?a(1)=1;
s(2)=a(2)+a(1)=[(a(2)+1)?]/4?4a(2)+4=a(2)?+2a(2)+1?a(2)=3
a(n)=S(n)-S(n-1)=(a(n)+1)?/4-(a(n-1)+1)?/4
4a(n)=a(n)?+2a(n)+1-[a(n-1)?+2a(n-1)+1][a(n)-1]?=[a(n-1)+1]?
a(n)-1=a(n-1)+1
a(n)-a(n-1)=2?a(n)为公差为2的等差数列
∴a(n)=2n-1
求 高考数列各种主要题型
(1)
a(n+1)=3an+1
a(n+1)+1/2=3an+3/2=3(an+1/2)
[a(n+1)+1/2]/(an+1/2)=3,为定值
a1+1/2=1+1/2=3/2
数列{an+1/2}是以3/2为首项,3为公比的等比数列
an+1/2=(3/2)·3^(n-1)=3?/2
an=(3?-1)/2
n=1时,a1=(3-1)/2=1,同样满足表达式
数列{an}的通项公式为an=(3?-1)/2
(2)
1/a1=1/1=1
1/an=2/(3?-1)
n≥1,3?-1≥3-1=2>0,1/an恒为正。
[1/a(n+1)]/(1/an)=(3?-1)/[3^(n+1)-1]
=(1/3)[3^(n+1)-3]/[3^(n+1)-1]
=(1/3)[3^(n+1)-1-2]/[3^(n+1)-1]
=(1/3)[1- 2/(3^(n+1)-1)]
=1/3 -2/[3^(n+2)-3]<1/3
1/a1+1/a2+...+1/an
<1+1·(1/3)+...+1·(1/3)^(n-1)
=1·[1-(1/3)?]/(1-1/3)
=(3/2)(1-1/3?)
=3/2 -3/(2·3?)
3/(2·3?)>0,3/2 -3/(2·3?)<3/2
1/a1+1/a2+...+1/an<3/2
很简单的一道题。之所以说它简单,是因为第一问已经告诉你数列{an+1/2}是等比数列了。如果是高考的数列题,这个规律应该是不告诉你的,直接让你求通项公式。
第二问用到了放缩法。通过放缩,构造等比数列求和。
求数列通项公式的常规思想方法列举(配典型例题)
数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。
一. 观察法
例1:根据数列的前4项,写出它的一个通项公式:
(1)9,99,999,9999,…
(2)
(3)
(4)
解:(1)变形为:101-1,102―1,103―1,104―1,……
∴通项公式为:
(2) (3) (4) .
观察各项的特点,关键是找出各项与项数n的关系。
二、定义法
例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),
(1)求数列{ a n }和{ b n }的通项公式;
解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,
∴a3-a1=d2-(d-2)2=2d,
∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,
∴ =q2,由q∈R,且q≠1,得q=-2,
∴bn=b?qn-1=4?(-2)n-1
当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。
三、 叠加法
例3:已知数列6,9,14,21,30,…求此数列的一个通项。
解 易知
∵
……
各式相加得 ∴
一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。
四、叠乘法
例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。
解:由(n+1)? =n? 得 ,
= … = 所以
一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。
五、公式法
若已知数列的前 项和 与 的关系,求数列 的通项 可用公式
求解。
例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。
(1) 。 (2)
解: (1)
= = =3
此时, 。∴ =3 为所求数列的通项公式。
(2) ,当 时
由于 不适合于此等式 。 ∴
注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。
例6. 设数列 的首项为a1=1,前n项和Sn满足关系
求证:数列 是等比数列。
解析:因为
所以
所以,数列 是等比数列。
六、阶差法
例7.已知数列 的前 项和 与 的关系是
,其中b是与n无关的常数,且 。
求出用n和b表示的an的关系式。
解析:首先由公式: 得:
利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即
其和为 。
七、待定系数法
例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn
解:设
点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。
八、 辅助数列法
有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例9.在数列 中, , , ,求 。
解析:在 两边减去 ,得
∴ 是以 为首项,以 为公比的等比数列,
∴ ,由累加法得
=
= … = =
=
例10.(2003年全国高考题)设 为常数,且 ( ),
证明:对任意n≥1,
证明:设,
用 代入可得
∴ 是公比为 ,首项为 的等比数列,
∴ ( ),
即:
型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.
(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。
例11:已知数 的递推关系为 ,且 求通项 。
解:∵ ∴
令
则辅助数列 是公比为2的等比数列
∴ 即 ∴
例12: 已知数列{ }中 且 ( ),,求数列的通项公式。
解:∵
∴ , 设 ,则
故{ }是以 为首项,1为公差的等差数列
∴ ∴
例13.(07全国卷Ⅱ理21)设数列 的首项 .
(1)求 的通项公式;
解:(1)由
整理得 .
又 ,所以 是首项为 ,公比为 的等比数列,得
注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成
则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。
(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。
例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。
解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1
易得 bn= 即 2nan=
∴ an=
(3) f(n)为等差数列
例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。
解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2
因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。
注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。
(4) f(n)为非等差数列,非等比数列
例16.(07天津卷理)在数列 中, ,其中 .
(Ⅰ)求数列 的通项公式;
解:由 , ,
可得 ,
所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .
这种方法类似于换元法, 主要用于已知递推关系式求通项公式。
九、归纳、猜想
如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…
(1) 写出 与 之间的关系式( )。
(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。
(3) 略
解析:(1)∵ 是线段 的中点, ∴
(2) ,
= ,
= ,
猜想 ,下面用数学归纳法证明
当n=1时, 显然成立;
假设n=k时命题成立,即
则n=k+1时, =
=
∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。
例18:在数列{ }中, ,则 的表达式为 。
分析:因为 ,所以得: ,
猜想: 。
十、倒数法
数列有形如 的关系,可在等式两边同乘以 先求出
例19.设数列 满足 求
解:原条件变形为 两边同乘以 得 .
∵
∴
综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.