您现在的位置是: 首页 > 专业报考 专业报考
高考数学钢琴键题_高考数学钢琴键选择题
tamoadmin 2024-06-06 人已围观
简介1.数学题!!~急!~~~~~2.2018年高考数学压轴题考什么?3.数学在音乐中还有许多奇妙功能和应用,你能举出具体的例子吗?4.昨天高考数学题难吗音名:用C、D、E、F、G、A、B来标记基本音级的,叫做音名。它们表示这一定的音高,而且在五线谱上和键盘上的位置是固定不变的。唱名:用do、re、mi、fa、so、la、si作为音级名称的,叫做唱名。现在我们常见的钢琴一般都是88个键。 36个黑键,
1.数学题!!~急!~~~~~
2.2018年高考数学压轴题考什么?
3.数学在音乐中还有许多奇妙功能和应用,你能举出具体的例子吗?
4.昨天高考数学题难吗
音名:用C、D、E、F、G、A、B来标记基本音级的,叫做音名。它们表示这一定的音高,而且在五线谱上和键盘上的位置是固定不变的。唱名:用do、re、mi、fa、so、la、si作为音级名称的,叫做唱名。
现在我们常见的钢琴一般都是88个键。 36个黑键,52个白键。 但是也有66,85,73等键数的小钢琴,66键的少了大字2组和小字3、4组,但是这样的制作技术现在很少有钢琴厂在用了。
每组中包含7个白键和5个黑键,7个白键表达七个基本音级名称,5个黑键填充白键之间的半音,使每组无论黑键白键的12个键中,每相邻的二键之间音程距离相等,都是半音,这也就是所谓的“十二平均律”。
扩展资料:
钢琴(意大利语:pianoforte)是西洋古典音乐中的一种键盘乐器,有“乐器之王”的美称。由88个琴键(52个白键,36个黑键)和金属弦音板组成。意大利人巴托罗密欧·克里斯多佛利(Bartolomeo Cristofori,1655-1731)在1709年发明了钢琴。
钢琴音域范围从A0(27.5Hz)至 C8(4186Hz),几乎囊括了乐音体系中的全部乐音,是除了管风琴以外音域最广的乐器。钢琴普遍用于独奏、重奏、伴奏等演出,作曲和排练音乐十分方便。
演奏者通过按下键盘上的琴键,牵动钢琴里面包着绒毡的小木槌,继而敲击钢丝弦发出声音。钢琴需定时的护理,来保证它的音色不变。
参考资料:
数学题!!~急!~~~~~
2023年全国甲卷数学比较难
一、高考数学考试注意事项:
1.熟悉考试时间和题型,做好时间规划。
2.仔细阅读题目,理解题意,避免因阅读错误而导致的失分。
3.要掌握好基本知识和技巧,提高解题能力。
4.注意计算过程和答案的准确性。
二、以下将从多个方面对这一问题进行拓展解析。
1.熟悉考试时间和题型
(1)掌握考试时间:高考数学考试共120分钟,可以在考试开始前设置好考试结束时间的闹钟以帮助合理安排时间。
(2)研究题型分布:不同年份高考数学试卷的题型及其难度都有所不同,了解题型分布情况有助于优化答题策略。
2.仔细阅读题目
(1)认真审题:高考数学试卷中的题目有些是陈述题,有些则需要自己填写答案,因此要认真审题,避免失误。
(2)理解题意:有些题目需要对题干进行推理、分析和比较,具体做法包括画图、列方程、找特殊值、分类讨论等。
(3)做完题目要反复检查:在考试结束前应该有时间对做过的题目进行复查,避免粗心导致的失分。
3.掌握基本知识和技巧
(1)数学基础知识的掌握:数学基础知识是高考数学考试的基础,如整数运算、分式化简、代数式化简、长方体、二次函数等。
(2)掌握解题技巧:高考数学试卷中的一些题目需要考生掌握一定的解题技巧,包括理解含义、几何图形的变换、利用角度、判断选项的方法等。
4.注意计算过程和答案的准确性
(1)计算过程的准确性:计算过程的准确性是高考数学试卷重要的评分依据之一,因此要注意计算、推理和操作的准确性。
(2)答案的准确性:做好题目后一定要认真检查答案,并在确认无误后填涂答案卡,避免因为填错答案而导致失分。
总结:想要在高考数学考试中取得好成绩,需要注意仔细阅读题目、掌握好基本知识和技巧、注意计算过程和答案的准确性以及熟悉考试时间和题型。还要在平时的学习中多做练习,才能更好地应对高考数学考试。
2018年高考数学压轴题考什么?
你先理解人次这个概念 就说会一样乐器为一人次 那么里面总共有20+16+24=60人次会乐器
从电子琴入手 有24个人会电子琴 那么去掉24个人次 还剩下36人次
即会弹钢琴的又会电子琴的有10人 那就再去掉10人次 还剩下26人次
会手风琴和电子琴的有8人 那就再去掉8人次 还剩下18人次
这18人次就是会弹钢琴和手风琴的人次 其中即会拉手风琴又会弹钢琴的有8人 那么就再去掉8人次 则剩下10人次
这样我们就把会2种乐器的人次去掉了 剩下的是只会一种乐器的人
只会电子琴的有24人 只会手风琴和钢琴的人有10人 加起来就是34人 总共有38个人 那么不考虑有人会3种乐器的情况下 至少有4个人什么都不会
不知道你看懂没有 没有的话可以再找我 祝你好运啊
数学在音乐中还有许多奇妙功能和应用,你能举出具体的例子吗?
高考数学的压轴题历来都是很难的,也是数学试卷中考的最全面的题型。每年每省的高考压轴题都是在不同题型中选择,但是也是有一个范围的。下面为各位介绍一下高考数学压轴题的内容。
1 2018年高考数学压轴题考什么?
我的当然不知道高考压轴题会考什么,但是可以为各位提供一个范围。
1、高考数学压轴题即最后一题一般考察函数知识、数列知识或圆锥曲线(抛物线、椭圆或双曲线)知识,解题需一定的技巧性。
2、一般压轴题第一问比较简单,二三问有难度。可以尽力解答第一问,二三问可以试着解答,不会做也无所谓,不要让其影响到你情绪。平时认真复习,考试认真答题,发挥出自己的实力就可以了。
1 数学压轴题难吗?
一般会很难,没有几个人能做出来。高考数学最后一道题一般是数列题,第一问一般是求通项,还算容易,如果数学学得好应该能做出来。后两问一般会比较难,短时间内很难做出来。其实很多人在150分钟内根本做不到最后一题,所以最好还是把心思放在前面的题上,把前面的题做好,也能拿高分,千万不要把时间浪费在最后一道题上。
1 如何训练解答高考数学压轴题?
1、如果也没有好的老师,那就做题,刷题吧。自己总结方法。但刷题仅限于应试,对学数学本身不好。数学是有思想的。
2、浙大,中科大出版的书都很不错;还有很多数学竞赛老师编的高考书其实可以看看。不推荐《5.3》,太简单了,对130以上的不太好。还有市面上很多高考数学辅导书其实不太适合你,因为很多是对基础薄弱的120以下突破120适用。
如果是数学成绩普通的学生,我建议不要浪费过多的时间,适当的取舍是很有必要的。如果是学霸类型的,想要在数学压轴题上提高,那么一定要多多刷题,把所有类型题都弄明白,也就差不多了。
昨天高考数学题难吗
文章来源:《数学通报》
在这一轮课程改革中,“数学与文化”成为了数学和数学教育工作者最为关注的问题之一. 实际上,在很长一段时间内,许多数学和数学教育工作者已经在思考和研究这个问题, 在即将推行的“高中数学课程标准”中,明确的要求把“数学文化”贯穿高中课程的始终. 对于涉及“数学文化”的一系列理论问题,应该承认还没有讨论得很清楚, 还有很多的争论,例如,很多学者对“数学文化”这个说法也有疑义,我们认为这是很正常的. 对这些问题的研究,我们建议从两个方面同时进行, 一方面进行理论上的研究;另一方面,积极地开发一些“数学与文化”的实例,案例,课例,探索如何将“数学文化”渗透到课堂教学中,如何让学生从“数学文化”中提高数学素养, 在此基础上再进行一些理论上的思考,从实践到理论,做一些实证研究. 下面是我们提供的一个实例 ———数学与音乐,也可以看作一个素材,很希望工作在一线的教师能作进一步的开发,能使这样的素材以不同的形式进入课堂或课外活动.我们也希望有更多的人来开发这样的素材, 并希望这些素材能出现在教材中.
在数学课程标准的研制过程中,我们结识了一些音乐界的专家,他们给我们讲述了很多音乐和数学的联系,数学在音乐中的应用,他们特别强调,在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学. 他们还告诉我们,在音乐界,有一些数学素养很好的音乐家为音乐的发展做出了重要的贡献. 他们和我们都希望有志于音乐事业的同学们学好数学,因为在将来的音乐事业中,数学将起着非常重要的作用.
《梁祝》优美动听的旋律《,十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲, 田野中昆虫啁啾的鸣叫 ……当沉浸在这些美妙的音乐中时,你是否想到了它们与数学有着密切的联系?
其实,人们对数学与音乐之间联系的研究和认识可以说源远流长. 这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来[1]. 他们不仅认识到所拨琴弦产生的声音与琴弦的长度有着密切的关系,从而发现了和声与整数之间的关系,而且还发现谐声是由长度成整数比的同样绷紧的弦发出的. 于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生了 , 而且在西方音乐界占据了统治地位. 虽然托勒密(C. Ptolemy ,约100 —165 年) 对毕达哥拉斯音阶的缺点进行了改造 ,得出了较为理想的纯律音阶(the Just Scale) 及相应的调音理论 ,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶(the temperedScale) 及相应的调音理论出现才被彻底动摇. 在我国,最早产生的完备的律学理论是三分损益律, 时间大约在春秋中期《管子.地员篇》和《吕氏春秋.音律篇》中分别有述;明代朱载 (1536 - 1610) 在其音乐著作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义 ?内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确, 与当今的十二平均律完全相同, 这在世界上属于首次.由此可见,在古代,音乐的发展就与数学紧密地联系在了一起. 从那时起到现在, 随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学.乐谱的书写离不开数学.
看一下乐器之王 ———钢琴的键盘吧,其上也恰好与斐波那契数列有关. 我们知道在钢琴的键盘上,从一个 C 键到下一个 C 键就是音乐中的一个八度音程(如图1) . 其中共包括13 个键,有8 个白键和5 个黑键 ,而 5 个黑键分成 2 组 ,一组有 2 个黑键 ,一组有 3 个黑键.2、3、5、8、13 恰好就是著名的斐波那契数列中的前几个数.
如果说斐波那契数在钢琴键上的出现是一种巧合, 那么等比数列在音乐中的出现就决非偶然了: 1、2、3、4、5、6、7、i等音阶就是利用等比数列规定的. 再来看图1,显然这个八度音程被黑键和白键分成了12个半音,并且我们知道下一个 C键发出乐音的振动次数(即频率) 是第一个 C 键振动次数的 2倍,因为用2 来分割,所以这个划分是按照等比数列而作出的. 我们容易求出分割比 x ,显然 x 满足 x12= 2 ,解这个方程可得 x 是个无理数 , 大约是 1106.于是我们说某个半音的音高是那个音的音高的1106 倍 ,而全音的音高是那个音的音高 11062 倍. 实际上,在吉它中也存在着同样的等比数列[3].
音乐中的数学变换.
数学中存在着平移变换,音乐中是否也存在着平移变换呢 ?我们可以通过两个音乐小节[2]来寻找答案. 显然可以把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移, 这实际上就是音乐中的反复. 把两个音节移到直角坐标系中,那么就表现为图 3. 显然,这正是数学中的平移. 我们知道作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的. 比如, 图 4 就是西方乐曲 When the Saints GoMarching In 的主题[2] ,显然 ,这首乐曲的主题就可以看作是通过平移得到的.
如果我们把五线谱中的一条适当的横线作为时间轴(横轴 x) ,与时间轴垂直的直线作为音高轴(纵轴y) ,那么我们就在五线谱中建立了时间 - 音高的平面直角坐标系. 于是, 图 4 中一系列的反复或者平移,就可以用函数近似地表示出来[2] , 如图 5 所示,其中 x 是时间, y 是音高. 当然我们也可以在时间音高的平面直角坐标系中用函数把图2中的两个音节近似地表示出来.
在这里我们需要提及十九世纪的一位著名的数学家,他就是约瑟夫.傅里叶 (Joseph Fourier) ,正是他的努力使人们对乐声性质的认识达到了顶峰. 他证明了所有的乐声, 不管是器乐还是声乐, 都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和[1].
音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等. 图6 的两个音节就是音乐中的反射变换[2]. 如果我们仍从数学的角度来考虑,把这些音符放进坐标系中, 那么它在数学中的表现就是我们常见的反射变换,如图 7所示. 同样我们也可以在时间 - 音高直角坐标系中把这两个音节用函数近似地表示出来.
通过以上分析可知,一首乐曲就有可能是对一些基本曲段进行各种数学变换的结果.
大自然音乐中的数学.
大自然中的音乐与数学的联系更加神奇,通常不为大家所知. 例如[2] , 蟋蟀鸣叫可以说是大自然之音乐,殊不知蟋蟀鸣叫的频率与气温有着很大的关系,我们可以用一个一次函数来表示:C = 4 t – 160。其中 C代表蟋蟀每分钟叫的次数, t 代表温度.按照这一公式,我们只要知道蟋蟀每分钟叫的次数,不用温度计就可以知道天气的温度了!
理性的数学中也存在着感性的音乐.
由一段三角函数图像出发,我们只要对它进行适当的分段,形成适当的小节, 并在曲线上选取适当的点作为音符的位置所在,那么就可以作出一节节的乐曲. 由此可见,我们不仅能像匈牙利作曲家贝拉 .巴托克那样利用黄金分割来作曲,而且也可以从纯粹的函数图像出发来作曲. 这正是数学家约瑟夫.傅里叶的后继工作,也是其工作的逆过程. 其中最典型的代表人物就是20 世纪20 年代的哥伦比亚大学的数学和音乐教授约瑟夫 .希林格(JosephSchillinger) ,他曾经把纽约时报的一条起伏不定的商务曲线描述在坐标纸上,然后把这条曲线的各个基本段按照适当的、和谐的比例和间隔转变为乐曲,最后在乐器上进行演奏, 结果发现这竟然是一首曲调优美、与巴赫的音乐作品极为相似的乐曲[2] !这位教授甚至认为,根据一套准则,所有的音乐杰作都可以转变为数学公式. 他的学生乔治 .格什温(George Gershwin) 更是推陈出新, 创建了一套用数学作曲的系统, 据说著名歌剧《波吉与贝丝》(Porgy and Bess) 就是他使用这样的一套系统创作的.
因而我们说, 音乐中出现数学、数学中存在音乐并不是一种偶然,而是数学和音乐融和贯通于一体的一种体现. 我们知道音乐通过演奏出一串串音符而把人的喜怒哀乐或对大自然、人生的态度等表现出来,即音乐抒发人们的情感, 是对人们自己内心世界的反映和对客观世界的感触,因而它是用来描述客观世界的,只不过是以一种感性的或者说是更具有个人主体色彩的方式来进行. 而数学是以一种理性的、抽象的方式来描述世界,使人类对世界有一个客观的、科学的理解和认识, 并通过一些简洁、优美、和谐的公式来表现大自然. 因此可以说数学和音乐都是用来描述世界的,只是描述方式有所不同,但最终目的都是为人类更好地生存和发展服务,于是它们之间存在着内在的联系应该是一件自然而然的事.
既然数学与音乐有如此美妙的联系,为何不让我们沉浸在《梁祝》优美动听的旋律中或置身于昆虫啁啾鸣叫的田野里静下心来思考数学与音乐的内在联系呢 ?为何不让我们在铮铮琵琶声中或令人激动的交响曲中充满信心地对它们的内在联系继续探索呢 ?
上面,我们提供了一些数学与音乐联系的素材,如何将这些素材“加工”成为“数学教育”的内容呢?我们提出几个问题仅供教材编写者和在一线工作的教师思考.
1) 如何将这样的素材经过加工渗透到数学教学和数学教材中 ?
2) 能否把这些素材编写成为“科普报告”, 在课外活动中,向音乐和数学爱好者报告,调查,了解,思考这样的报告对学生的影响以及学生对这样的报告的反映.
若干世纪以来,音乐和数学一直被联系在一起。在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中。今天的新式计算机正在使这条纽带绵延不断。
乐谱的书写是表现数学对音乐的影响的第一个显著的领域。在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数。
除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系。
毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。
你是否曾对大型钢琴为何制作成那种形状表示过疑问?实际上许多乐器的形状和结构与各种数学概念有关。指数函数和指数曲线就是这样的概念。指数曲线由具有y=kx形式的方程描述,式中k>0。一个例子是y=2x。它的坐标图如下。
不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状。
19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。
傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来。音高与曲线的频率有关,音量和音质分别与周期函数①的振幅和形状有关。
如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展。数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的。许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较。电子音乐复制的保真度也与周期曲线密切相关。音乐家和数学家将继续在音乐的产生和复制方面发挥同等重要的作用。
上图表示一根弦的分段振动和整体振动。最长的振动决定音高,较小的振动则产生泛音。
①周期函数即以等长区间重复着形状的函数。
昨天高考数学题难。整张试卷上的考试题目根本没有难易程度的阶梯之分,从最开始的题目到最后的题目,所有题目的难度都维持在较高水准之上。?
高考数学120分钟答题
1.用好考前五分钟
高考开考的前5分钟考生会拿到数学卷子,但不可以作答。不过,这5分钟也很重要。
一种方法是先用5分钟浏览选做数学题,确定选择极坐标或者不等式,开考先做选做,拿到10分心里就不慌了,这样也避免到最后没有时间做选做题。
第二种方法是先把最简单的前两个题在脑海中做出来,开考就直接拿10分。
2.控制好时间,高考数学总共是120分钟,平均每道选填的时间是3分钟,容易的题争取一分钟出答案,争取在50分钟左右内拿下这80分,并且要求一遍准,不要在个别小题上花费大量时间。
同时,小题还要注意多种方法结合,比如数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算等方法,一旦思路清晰,就迅速作答。
高考不在一道题上纠缠,可以先做好标记,或者用特值等方法先得到一个答案,后面有时间再攻克。
数学简介
数学[英语:mathematics,源自古希腊语μ?θημα(máthēma);经常被缩写为mat],是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段。
可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
下一篇:战争高考真题_战争高考题解析