您现在的位置是: 首页 > 专业报考 专业报考
高考文数试题及答案,文数高考答案
tamoadmin 2024-05-28 人已围观
简介1.急求2009高考上海卷文科数学答案2.2013北京高考文数第20题第三问的答案有2处看不懂怎么来的(见下文红字部分)。。求数学高人指点,感谢!3.2009年江西高考文数,帮帮忙,想不通啊,请告诉我答案肿么来的4.2013山东春季高考数学语文试题,及答案,5.12陕西高考答案数学6.2010湖南文科数学高考题第8题怎么做7.2022全国乙卷数学答案(文科):全国乙卷数学2022文数试卷及答案参考
1.急求2009高考上海卷文科数学答案
2.2013北京高考文数第20题第三问的答案有2处看不懂怎么来的(见下文红字部分)。。求数学高人指点,感谢!
3.2009年江西高考文数,帮帮忙,想不通啊,请告诉我答案肿么来的
4.2013山东春季高考数学语文试题,及答案,
5.12陕西高考答案数学
6.2010湖南文科数学高考题第8题怎么做
7.2022全国乙卷数学答案(文科):全国乙卷数学2022文数试卷及答案
参考答案
1.答案C
解析A秣(mò)、B倾轧(yà)、D解剖(pōu)
考点语音
2.答案B
解析A、始作俑者:贬义词。俑,古代殉葬用的木制或陶制的俑人。开始制作俑的人。比喻首先做某件坏事的人。B、移樽就教:樽,古代盛酒器;就,凑近。端着酒杯离座到对方面前共饮,以便请教。比喻主动去向人请教。C、声情并茂:并,都;茂,草木丰盛的样子,引申为美好。指演唱的音色、唱腔和表达的感情都很动人。使用对象错误。D、附庸风雅:贬义词。附庸,依傍,追随;风雅,泛指诗歌。指缺乏文化修养的人为了装点门面而结交文人,参加有关文化活动。解答成语题,第一、逐字解释成语,运用成语结构特点把握成语大意,但要注意不能望文生义;第二、注意成语潜在的感情色彩和语体色彩;第三、要注意成语使用范围,搭配的对象;第四、弄清所用成语的前后语境,尽可能找出句中相关联的信息;第五、从修饰与被修饰关系上分析,看修饰成分跟中心词之间是否存在前后语义矛盾或者前后语义重复的现象。
考点正确使用词语(包括熟语),能力层级为表达应用 D
3.答案B
解析A 句式杂糅 C “基地”与“机构”搭配不当 D 成分残缺,“采取”缺少宾语。
考点病句辨析
4.答案A
解析排序内容由总到分,注意小范围句间勾连,⑥①⑤一定是连在一起的。连贯类题目做题时要注意把握基本内容,初步分层归类,先在小范围内排序,然后再考查层次间的衔接,这其中应先找出关联词、代词以及表时间、地点的词语,然后据此进行句间连缀排列。在上面排列的基础之上,再通读语段,检查确定。
考点语言表达连贯,能力层级为表达应用 D
5.答案C
解析“从而解决了情绪异常的防治问题”不符合文意。“了”字未然当已然理解。
考点筛选文中重要信息
6.答案D
解析“残存农药、食品添加剂和抗生素等杀死大量肠道细菌”,“高蛋白物质就会被分解出大量硫化氢和氨等有害物质”是两个不同的原因,二者不存在因果关系。
考点理解文中重要句子的含义
7.答案A
解析多巴胺是神经元中传导神经兴奋的一种化学物质,当多巴胺传导顺畅的时候,大脑内部就会产生一系列化学变化,使我们产生快感。是多巴胺传导顺畅与否,不是多巴胺量的多少。
考点根据文章内容进行推断和想象
8.答案B
解析“宠”为“宠爱”、“奖赏”之意。
考点文言实词在文中的含义。
9.答案B
解析②句是用比喻说理,不触及利害关系;④是说他史事擅长,有文采。
考点筛选信息,理解人物形象。
10.答案C
解析“书成,擢翰林待制,同知制诰兼国史院编修官”中“擢”和“知”理解错误,“擢”是提拔,“知”掌管。
考点归纳要点,概括中心。
11.答案
(1)恰巧元朝派遣脱脱来征收粮饷,用耸人听闻的话威胁梁王,一定要杀掉王祎。
(2)上天已经结束了你们元朝的命运,我们朝廷取代了它。你们这些微火残灰,竟敢与日月争辉吗?
解析(1)注意“会”“遗”“必”“胁王以危言(状语后置)”的翻译。(2)注意“既”“讫”“实”“馀烬”“敢与日月争明”的翻译。文言文翻译要严格执行直译的原则;找准得分点:重点实词、活用词、句式特点、重要虚词、通假、偏义复词;保持译句流畅通顺让,译句和原文语境吻合。
考点理解并翻译文中的句子,能力层级为理解 B
12.(1)答案这首诗描写了素蝶随蜂悠游,遇雀躲藏;映衬日光腾起,顺着风势返回;在花丛中时出时没,于树叶间上下翻飞。是通过素蝶与周围事物的关系、对不同情况的反应来描写的。
分析采用细节描写,以蜂、雀、日、风、花、叶作衬托。注意动词“绕、隐、争、归、见、飞”等。
考点鉴赏诗歌意象及其作用。
(2)答案这首诗通过对素蝶活动的描写,表现了诗人在现实生活中的悲欢、沉浮,最后两句突出了作者对美好事物的依恋和向往。采用了托物言志的手法。
分析从注释看,作者“文名颇盛,因恃才傲物,而为人所忌恨,仕途数起数伏”,可知作者借素蝶抒发怀才不遇的感慨,尾联希望得到别人赏识的愿望。
考点鉴赏诗歌的手法和思想感情。
13.答案
(1)路漫漫其修远兮,吾将上下而求索。_(屈原《离骚》)
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。(诸葛亮《出师表》),
但见悲鸟号古木,雄飞从雌 绕林间。 又闻子规啼夜月,愁空山,(李白《蜀道难》)
(2)自我徂尔,三岁食贫,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。(《诗经。氓》)
子曰:“温故而知新,可以为师矣。”(《论语。为政》)[来源:学科网ZXXK]
落霞与孤鹜齐飞,秋水共长天一色。(王勃《滕王阅序》)
考点名句名篇默写
14.答案①寄托作者对童年时光、童年生活的深切留恋和怀念;②使童年的生活图景更真实、具体、生动,给人以身临其境的感受;③激发读者的阅读兴趣。
分析文章三处细节写了煤油灯的外形或使用,结合作者生活的时代背景及抒发的思想感情作答。考察细节描写的作用。
15.答案
(1)①即使普通的煤油灯,在贫困的年代里也是很宝贵的;②灯下的温馨和苦读,是更值得珍惜的人生的宝贵财富。
(2)①曾经拥有的灯下的温馨已经逝去,“我”有一种不知身在何处的怅惘;②社会进步的同时,也不可避免地失去了一些美好的东西。
分析此题考查理解文中重要句子的含义。第一句从比喻的本体和比喻义及作者在文章表达的情感,可以得到答案。第二句抓住“迷失”来分析作答。
16.答案
第一问:文章以第一人称作为全文的基本视角;②偶尔插入第二人称,构成两种不同人称的互相交叉。
第二问:①不同人称的出现丰富了文章的叙事手段,有助于作者思想情感的表达;②营造了一种亲切的气氛,拉近作者和读者之间的距离。
分析考查人称变换在文中的作用。注意人称变换与作者情感的变化。
17.答案①灯火让作者不时想起与它共处的那段时光,它是作者人生中的“永恒之火”;②灯火下的祖孙相牵,使作者贫穷的童年生活变得温馨而富有诗意;③作者的成长离不开灯火下的夜读,这是作者人生的重要一步。
分析考查概括中心主题。结合全文分析灯火在文中的含义。
18.答案①赫然②悄悄③扩散④缀满⑤汇聚⑥显现⑦陶醉⑧映衬
19.答案①没有约定俗成的定义;②广泛的产业领域和管理领域。
20.答案略
分析自选一个话题,写三个比喻句,构成排比,句式与例句相同。
21.作文略
急求2009高考上海卷文科数学答案
今天小编辑给各位分享高考数学试卷2022的知识,其中也会对对口高考数学试卷2022分析解答,如果能解决你想了解的问题,关注本站哦。
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022新高考全国卷的数学题是什么难度?有多少基础分?
随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。
一、2022年新高考全国卷的数学题处于中上等难度
根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分
一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结
总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。
2022年高考数学试题有哪些新变化?
2022年高考数学落实立德树人根本任务,促进学生德智体美劳全面发展,体现高考改革的要求。试卷突出数学学科特点,强化基础考查,突出关键能力,加强教考衔接,服务“双减”政策实施,助力基础教育提质增效。
变化一、设置现实情境,发挥育人作用
高考数学命题坚持思想性与科学性的统一,发挥数学应用广泛、联系实际的学科特点,设置真实情境,命制具有教育意义的试题,发挥数学考试的教育功能和引导作用。
变化二、设置优秀传统文化情境
数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如新高考Ⅱ卷第3题以中国古代建筑中的举架结构为背景,考查学生综合应用等差数列、解析几何、三角函数等基础知识解决实际问题的能力。全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。
变化三、设置社会经济发展情境
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如新高考Ⅰ卷第4题以我国的重大建设成就“南水北调”工程为背景,考查学生的空间想象、运算求解能力,试题引导学生关注社会主义建设的成果,增强社会责任感。全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。全国乙卷文、理科第19题以生态环境建设为背景材料,考查学生应用统计的基本知识和基础方法解决实际问题的能力,对数据处理与数学运算素养也作了相应的考查。
高考数学试卷2022难吗
难。
全国卷,和新高考卷的高考学子,都觉得2022年高考数学试卷还是挺难的。不过难的话,其他人也不会太容易,换个心态,大家都很难,心理就会平衡一些了。
全国卷和新高考卷的高考学子们,考过了就把心态调整好,积极的面对接下来的考试,才是最正确的做法。心态好,可能运气就会好,接下来的考试就可能会发挥的更好。
考生四:王少波,重庆考生
咳,难啊,一点都不简单。我还听被人数,新高考卷的数学题目简单一些,这真是在胡扯八道。这张试卷,从选择题道填空题,再到大题,都比平时的难很多。考完数学之后,我们班好多考生都觉得难,包括我们的数学老师,都说这试卷,出的有点难为人了。今年新高考卷的考生,也太难了,我都听说全国卷的简单一些。
你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?
今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。
2022新高考全国一卷数学试卷及答案解析
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考全国乙卷试题及答案
★2022全国甲卷高考数学文科试卷及答案解析
★2022高考甲卷数学真题试卷及答案
★2022年北京高考数学试卷
★2022高考全国甲卷数学试题及答案
★2022全国新高考I卷语文试题及答案
★2022全国新高考Ⅰ卷英语试题及答案解析
★2022年全国新高考II卷数学真题及答案
★2022北京卷高考文科数学试题及答案解析
2013北京高考文数第20题第三问的答案有2处看不懂怎么来的(见下文红字部分)。。求数学高人指点,感谢!
上海 数学试卷(文史类)
考生注意:
1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2. 本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________.
2.已知集体A={x|x≤1},B={x|≥a},且A∪B=R,
则实数a的取值范围是__________________.
3. 若行列式 中,元素4的代数余子式大于0,则x满足的条件是__________________.
4.某算法的程序框如右图所示,则输出量y与输入量x满足的关系式是________________.
5.如图,若正四棱柱ABCD—A1B1C1D1的底面边长为2,
高为4,则异面直线BD1与AD所成角的大小是___________________
(结果用反三角函数值表示).
6.若球O1、O2表示面积之比 ,则它们的半径之比 =_____________.
7.已知实数x、y满足 则目标函数z=x-2y的最小值是___________.
8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 。
9.过点A(1,0)作倾斜角为 的直线,与抛物线 交于 两点,则 = 。
10.函数 的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知 是椭圆 的两个焦点, 为椭圆 上的一点,且 。若 的面积为9,则 .
13.已知函数 。项数为27的等差数列 满足 且公差 ,若 ,则当k= 时, 。
14.某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点。若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点 为发行站,使5个零售点沿街道发行站之间路程的和最短。
二。、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分。
15.已知直线 平行,则K得值是( )
(A) 1或3 (B)1或5 (C)3或5 (D)1或2
16,如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )
17.点P(4,-2)与圆 上任一点连续的中点轨迹方程是 [答]( )
(A) (B)
(C) (D)
18.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 [答]( )
(A)甲地:总体均为3,中位数为4 . (B)乙地:总体均值为1,总体方差大于0 .
(C)丙地:中位数为2,众数为3 . (D)丁地:总体均值为2,总体方差为3 .
三.解答题(本大题满分78分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .
19.(本题满分14分)
已知复数 (a、b )(I是虚数单位)是方程 的根 . 复数 ( )满足 ,求 u 的取值范围
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .
已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量 ,
,
若 // ,求证:ΔABC为等腰三角形;
(1) 若 ⊥ ,边长c = 2,角C = ,求ΔABC的面积
21.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分 .有时可用函数
描述学习某学科知识的掌握程度.其中 表示某学科知识的学习次数( ), 表示对该学科知识的掌握程度,正实数a与学科知识有关
(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121〕,(121,127〕,
(127,133〕.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.
已知双曲线C的中心是原点,右焦点为F ,一条渐近线m: ,设过点A 的直线l的方向向量 。
(1) 求双曲线C的方程;
(2) 若过原点的直线 ,且a与l的距离为 ,求K的值;
(3) 证明:当 时,在双曲线C的右支上不存在点Q,使之到直线l的距离为 .
23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.
已知 是公差为d的等差数列, 是公比为q的等比数列
(1)若 ,是否存在 ,有 ?请说明理由;
(2)若 (a、q为常数,且aq 0)对任意m存在k,有 ,试求a、q满足的充要条件;
(3)若 试确定所有的p,使数列 中存在某个连续p项的和式数列中 的一项,请证明.
上海 (数学文)参考答案
一、 填空题
1. 2.ɑ≤1 3. 4.
5 6.2 7.-9 8.
9. 10. 11. 12.3
13.14 14(3,3)
二、选择题
题号 15 16 17 18
代号 C B A D
三、 解答题
19.解:原方程的根为
20题。证明:(1)
即 ,其中R是三角形ABC外接圆半径,
为等腰三角形
解(2)由题意可知
由余弦定理可知,
21题。证明(1)当 时,
而当 时,函数 单调递增,且
故函数 单调递减
当 时,掌握程度的增长量 总是下降
(2)有题意可知
整理得
解得 …….13分
由此可知,该学科是乙学科……………..14分
22.解(1)设双曲线 的方程为
,解额 双曲线 的方程为
(2)直线 ,直线
由题意,得 ,解得
(3)证法一设过原点且平行于 的直线
则直线 与 的距离 当 时,
又双曲线 的渐近线为
双曲线 的右支在直线 的右下方,
双曲线 右支上的任意点到直线 的距离大于 。
故在双曲线 的右支上不存在点 ,使之到直线 的距离为
证法二假设双曲线 右支上存在点 到直线 的距离为 ,
则
由(1)得
设 ,
当 时, ;
将 代入(2)得
,
方程 不存在正根,即假设不成立,
故在双曲线 的右支上不存在点 ,使之到直线 的距离为
23.解(1)由 得 ,
整理后,可得
、 , 为整数
不存在 、 ,使等式成立。
(2)当 时,则
即 ,其中 是大于等于 的整数
反之当 时,其中 是大于等于 的整数,则 ,
显然 ,其中
、 满足的充要条件是 ,其中 是大于等于 的整数
(3)设
当 为偶数时, 式左边为偶数,右边为奇数,
当 为偶数时, 式不成立。
由 式得 ,整理得
当 时,符合题意。
当 , 为奇数时,
由 ,得
当 为奇数时,此时,一定有 和 使上式一定成立。
当 为奇数时,命题都成立。
十分抱歉,图不会发,你能否告诉我!
2009年江西高考文数,帮帮忙,想不通啊,请告诉我答案肿么来的
1)
根据B(i)的定义,B(i)=min{a(i+1),a(i+2),...,a(n)}<=min{a(i+2),...,a(n)}=B(i+1)
数列B是递增数列
2)B(n-1)=a(n)
3)B(1)<=B(2)<=...<=B(n-1)=a(n)
4)根据前面的结论B(1)<a(1)<a(2)<...<a(n-1)
而根据定义有:B(1)=min{a(2),a(3),...,a(n-1),a(n)}
B(1)只能等于a(n)
5)根据3)和4),所有的B(i)=a(n),i=1,2,..,n-1
要特别注意的是a(n)并不属于等差数列中的元素。
6)由此有结论A(i+1)=B(i+1)+d(i+1)=a(n)+d(i+1)
A(i)=a(n)+d(i)
a(i+1)-a(i)=A(i+1)-A(i)=d(i+1)-d(i)=d
2013山东春季高考数学语文试题,及答案,
这个题其实就是独立重复试验的问题,可以这样看这个问题,以一名学生为例,他在第一位评委老师处获得“支持”的概率为二分之一,在第二位评委处获得“支持”的概率也为二分之一,也就是说对每一名学生而言两位评委的打分都是互不影响的,这样就可以将3名学生的评审结果看作是六次独立重复试验,每次获得“支持”的概率均为二分之一,反之每次获得“不支持”的概率也为二分之一。
第一问,资助总额为零,则表示连续6次独立重复试验的结果均为“不支持”,故由分步原理得到结果为二分之一的六次方;
第二问,资助超过15万元,一个支持有5万元,也就是说六次试验里面要出现4个及以上支持,于是就是6个元素里面选4个、5个及6个元素的组合数之和15+6+1=22,再将22乘以二分之一的六次方,结果为得到11/32
总结:(该题其实就是离散随机变量的二项分布类型)
12陕西高考答案数学
2013年高职高考数学模拟试卷
姓名 班级 学号
一、单项选择题(本大题共25小题每小题3分,共75分)
1.集合A=,则下面式子正确的是( )
A.2AB.2AC.2AD.A
2.函数在其定义域上为增函数,则此函数的图象所经过的象限为( )
A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限
3.已知a>b>c,则下面式子一定成立的是( )
A ac>bcB.a-c>b-cC.D.a+c=2b
4.若函数满足,则( )
A.3B.1C.5D.
5.在等差数列中,若,则( )
A.14B.15C.16D.17
6.在0°~360°范围内,与一390°终边相同的角是( )
A.30°B.60°C.210°D.330°
7.已知两点A(一1,5),B(3,9),则线段AB的中点坐标为( )
A.(1,7)B.(2,2)C.(一2,一2)D.(2,14)
8.设,则下面表述正确的是( )
A.p是q的充分条件,但p不是q的必要条件
B.p是q的必要条件,但p不是q的充分条件
C.p是q的充要条件
D.p既不是q的充分条件也不是q的必要条件
9.不等式的解集为( )
A.(一2,2)B.(2,3)C.(1,2)D.(3,4)
10.已知平面向量,则的值分别是( )
A.B.C.D.
11.已知,且,则( )
A.B.C.D.
12.某商品原价200元,若连续两次涨价10%后出售,则新售价为( )
A.222元B.240元C.242元D.484元
13.从6名候选人中选出4人担任人大代表,则不同选举结果的种数为( )
A.15B.24C.30D.360
14.双曲线的离心率为( )
A.B.24C.D.
1513.直线3x-4y+12=0与圆x2+y2+10x-6y-2=0的位置关系是( )
A.相交 B.相切C.相离 D.相交且过圆心
16.已知直线与直线垂直,则a的值是( )
A.一5B.一1C.一3D.1
17.若,则=( )
A.4B.C.8D.16
18. 在同一直角坐标系中,当a>1时,函数y=a–x与y=logax的图像是( )
A B C D
19、如图,正方体ABCD-A1B1C1D1中,
两异面直线AC与B C1所成角的大小为( )
A.30°B.45°
C.60°D.90°
20.把函数y=3sin(2x–)的图像变换为函数y=3sin2x的图像,这种变换是( )
A.向右平移个单位B.向左平移个单位
C.向右平移个单位D.向左平移个单位
21、展开式的中间项是 ( )
A、 B、 C D、
22、 图中阴影(包括直线)表示的区域满足的不等式是( )
A、x-y-1≥0 B、x-y+1≥0
C、x-y-1≤0 D、x-y+1≤0
23、从10个篮球中任取一个检验其质量,则该抽样为( )
A、简单随机抽样B、系统抽样C、分层抽样D、又放回抽样
24、某企业共有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样法抽取30人,则样本中各职称人数分别为( )
A 5,10,15 B 3,9,18 C 3,10,17 D 5,9,16
25、要从编号为1-50的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( )
A 5,10,15,20,25 B 3,13,23,33,43 C 1,2,3,4,5 D 6,15,27,34,48
二、填空题(本大题共5小题,每小题4分,共20分)
26.函数的定义域为__________(用区间表示).
27.有一个容量为20的样本,分组后的各小组的组距及其频数分别为:(10,20],2;(20,30] ,4;(30,40] ,3;(40,50],5;(50,60],4;(60,70],2;.则样本数据在(10,40]上的频率等于______
28、某射手在相同条件下射击10次,命中环数分别为7,8,6,8,6,5,9,10,7,4,则该样本的标准差是______
29.函数的最大值为__________
30.已知圆锥的侧面展开图是一个半径为4cm的半圆,则此圆锥的体积是__________
三、解答题(本大题共5小题,共55分)
31.(本题满分10分)已知函数.求:
(1);
(2)函数的最小正周期及最大值.
32.(本题满分11分)如图,已知ABCD是正方形;P是平面ABCD外一点,且
PA=AB=3.求:
(1)二面角P—CD—A的大小;
(2)三棱锥P—ABD的体积.
33.(本题满分12分)在等比数列中,已知,
(1)求通项公式;
(2)若,求的前10项和.
34.(本题满分12分)已知点在双曲线上,直线l过双曲线的左焦点F1且与x轴垂直,并交双曲线于A、B两点,求:
(1)m的值;
(2)|AB|.
35、某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元,
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利(盈利额为正值)? (14分)
2010湖南文科数学高考题第8题怎么做
希望能帮到你,
绝密*启用前2012年普通高等学校招生全国统一考试理科数学
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.
3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第一卷
一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 ;,则 中所含元素
的个数为( )
解析选
, , , 共10个
(2)将 名教师, 名学生分成 个小组,分别安排到甲、乙两地参加社会实践活动,
每个小组由 名教师和 名学生组成,不同的安排方案共有( )
种 种 种 种
解析选
甲地由 名教师和 名学生: 种
(3)下面是关于复数 的四个命题:其中的真命题为( )
的共轭复数为 的虚部为
解析选
, , 的共轭复数为 , 的虚部为
(4)设 是椭圆 的左、右焦点, 为直线 上一点,
是底角为 的等腰三角形,则 的离心率为( )
解析选
是底角为 的等腰三角形
(5)已知 为等比数列, , ,则 ( )
解析选
, 或
(6)如果执行右边的程序框图,输入正整数 和
实数 ,输出 ,则( )
为 的和
为 的算术平均数
和 分别是 中最大的数和最小的数
和 分别是 中最小的数和最大的数
解析选
(7)如图,网格纸上小正方形的边长为 ,粗线画出的
是某几何体的三视图,则此几何体的体积为( )
解析选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
(8)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于
两点, ;则 的实轴长为( )
解析选
设 交 的准线 于
得:
(9)已知 ,函数 在 上单调递减。则 的取值范围是( )
解析选
不合题意 排除
合题意 排除
另: ,
得:
(10)已知函数 ;则 的图像大致为( )
解析选
得: 或 均有 排除
(11)已知三棱锥 的所有顶点都在球 的求面上, 是边长为 的正三角形,
为球 的直径,且 ;则此棱锥的体积为( )
解析选
的外接圆的半径 ,点 到面 的距离
为球 的直径 点 到面 的距离为
此棱锥的体积为
另: 排除
(12)设点 在曲线 上,点 在曲线 上,则 最小值为( )
解析选
函数 与函数 互为反函数,图象关于 对称
函数 上的点 到直线 的距离为
设函数
由图象关于 对称得: 最小值为
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分。
(13)已知向量 夹角为 ,且 ;则
解析
(14) 设 满足约束条件: ;则 的取值范围为
解析 的取值范围为
约束条件对应四边形 边际及内的区域:
则
(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3
正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从
正态分布 ,且各个元件能否正常相互独立,那么该部件的使用寿命
超过1000小时的概率为
解析使用寿命超过1000小时的概率为
三个电子元件的使用寿命均服从正态分布
得:三个电子元件的使用寿命超过1000小时的概率为
超过1000小时时元件1或元件2正常工作的概率
那么该部件的使用寿命超过1000小时的概率为
(16)数列 满足 ,则 的前 项和为
解析 的前 项和为
可证明:
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知 分别为 三个内角 的对边,
(1)求 (2)若 , 的面积为 ;求 。
解析(1)由正弦定理得:
(2)
解得: (l fx lby)
18.(本小题满分12分)
某花店每天以每枝 元的价格从农场购进若干枝玫瑰花,然后以每枝 元的价格出售,
如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进 枝玫瑰花,求当天的利润 (单位:元)关于当天需求量
(单位:枝, )的函数解析式。
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率。
(i)若花店一天购进 枝玫瑰花, 表示当天的利润(单位:元),求 的分布列,
数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由。
解析(1)当 时,
当 时,
得:
(2)(i) 可取 , ,
的分布列为
(ii)购进17枝时,当天的利润为
得:应购进17枝
(19)(本小题满分12分)
如图,直三棱柱 中, ,
是棱 的中点,
(1)证明:
(2)求二面角 的大小。
解析(1)在 中,
得:
同理:
得: 面
(2) 面
取 的中点 ,过点 作 于点 ,连接
,面 面 面
得:点 与点 重合
且 是二面角 的平面角
设 ,则 ,
既二面角 的大小为
(20)(本小题满分12分)
设抛物线 的焦点为 ,准线为 , ,已知以 为圆心,
为半径的圆 交 于 两点;
(1)若 , 的面积为 ;求 的值及圆 的方程;
(2)若 三点在同一直线 上,直线 与 平行,且 与 只有一个公共点,
求坐标原点到 距离的比值。
解析(1)由对称性知: 是等腰直角 ,斜边
点 到准线 的距离
圆 的方程为
(2)由对称性设 ,则
点 关于点 对称得:
得: ,直线
切点
直线
坐标原点到 距离的比值为 。(lfx lby)
(21)(本小题满分12分)
已知函数 满足满足 ;
(1)求 的解析式及单调区间;
(2)若 ,求 的最大值。
解析(1)
令 得:
得:
在 上单调递增
得: 的解析式为
且单调递增区间为 ,单调递减区间为
(2) 得
①当 时, 在 上单调递增
时, 与 矛盾
②当 时,
得:当 时,
令 ;则
当 时,
当 时, 的最大值为
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,
做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 分别为 边 的中点,直线 交
的外接圆于 两点,若 ,证明:
(1) ;
(2)
解析(1) ,
(2)
(23)本小题满分10分)选修4—4;坐标系与参数方程
已知曲线 的参数方程是 ,以坐标原点为极点, 轴的正半轴
为极轴建立坐标系,曲线 的坐标系方程是 ,正方形 的顶点都在 上,
且 依逆时针次序排列,点 的极坐标为
(1)求点 的直角坐标;
(2)设 为 上任意一点,求 的取值范围。
解析(1)点 的极坐标为
点 的直角坐标为
(2)设 ;则
(lfxlby)
(24)(本小题满分10分)选修 :不等式选讲
已知函数
(1)当 时,求不等式 的解集;
(2)若 的解集包含 ,求 的取值范围。
解析(1)当 时,
或 或
或
(2)原命题 在 上恒成立
在 上恒成立
在 上恒成立
2012年高考文科数学试题解析(全国课标)
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则
(A)AB (B)BA (C)A=B (D)A∩B=?
命题意图本题主要考查一元二次不等式解法与集合间关系,是简单题.
解析A=(-1,2),故BA,故选B.
(2)复数z= 的共轭复数是
(A) (B) (C) (D)
命题意图本题主要考查复数的除法运算与共轭复数的概念,是简单题.
解析∵ = = ,∴ 的共轭复数为 ,故选D.
(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线 y=x+1上,则这组样本数据的样本相关系数为
(A)-1 (B)0 (C) (D)1
命题意图本题主要考查样本的相关系数,是简单题.
解析有题设知,这组样本数据完全正相关,故其相关系数为1,故选D.
(4)设 , 是椭圆 : =1( > >0)的左、右焦点, 为直线 上一点,△ 是底角为 的等腰三角形,则 的离心率为
. . . .
命题意图本题主要考查椭圆的性质及数形结合思想,是简单题.
解析∵△ 是底角为 的等腰三角形,
∴ , ,∴ = ,∴ ,∴ = ,故选C.
(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则 的取值范围是
(A)(1-,2) (B)(0,2)
(C)(-1,2) (D)(0,1+)
命题意图本题主要考查简单线性规划解法,是简单题.
解析有题设知C(1+ ,2),作出直线 : ,平移直线 ,有图像知,直线 过B点时, =2,过C时, = ,∴ 取值范围为(1-,2),故选A.
(6)如果执行右边的程序框图,输入正整数 ( ≥2)和实数 , ,…, ,输出 , ,则
. + 为 , ,…, 的和
. 为 , ,…, 的算术平均数
. 和 分别为 , ,…, 中的最大数和最小数
. 和 分别为 , ,…, 中的最小数和最大数
命题意图本题主要考查框图表示算法的意义,是简单题.
解析由框图知其表示的算法是找N个数中的最大值和最小值, 和 分别为 , ,…, 中的最大数和最小数,故选C.
21世纪教育网(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为
.6 .9 .12 .18
命题意图本题主要考查简单几何体的三视图及体积计算,是简单题.
解析由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为 =9,故选B.
(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为
(A)π (B)4π (C)4π (D)6π
命题意图
解析
(9)已知 >0, ,直线 = 和 = 是函数 图像的两条相邻的对称轴,则 =
(A) (B) (C) (D)
命题意图本题主要考查三角函数的图像与性质,是中档题.
解析由题设知, = ,∴ =1,∴ = ( ),
∴ = ( ),∵ ,∴ = ,故选A.
(10)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 、 两点, = ,则 的实轴长为
. . .4 .8
命题意图本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.
解析由题设知抛物线的准线为: ,设等轴双曲线方程为: ,将 代入等轴双曲线方程解得 = ,∵ = ,∴ = ,解得 =2,
∴ 的实轴长为4,故选C.
(11)当0< ≤时, ,则a的 取值范围是
(A)(0,) (B)(,1) (C)(1,) (D)(,2)
命题意图本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题.
解析由指数函数与对数函数的图像知 ,解得 ,故选A.
(12)数列{ }满足 ,则{ }的前60项和为
(A)3690 (B)3660 (C)1845 (D)1830
命题意图本题主要考查灵活运用数列知识求数列问题能力,是难题.
解析法1有题设知
=1,① =3 ② =5 ③ =7, =9,
=11, =13, =15, =17, =19, ,
……
∴②-①得 =2,③+②得 =8,同理可得 =2, =24, =2, =40,…,
∴ , , ,…,是各项均为2的常数列, , , ,…是首项为8,公差为16的等差数列,
∴{ }的前60项和为 =1830.
法2可证明:
二.填空题:本大题共4小题,每小题5分。
(13)曲线 在点(1,1)处的切线方程为________
命题意图本题主要考查导数的几何意义与直线方程,是简单题.
解析∵ ,∴切线斜率为4,则切线方程为: .
(14)等比数列{ }的前n项和为Sn,若S3+3S2=0, 则公比 =_______
命题意图本题主要考查等比数列n项和公式,是简单题.
解析当 =1时, = , = ,由S3+3S2=0得 , =0,∴ =0与{ }是等比数列矛盾,故 ≠1,由S3+3S2=0得 , ,解得 =-2.
(15) 已知向量 , 夹角为 ,且| |=1,| |= ,则| |= .
命题意图.本题主要考查平面向量的数量积及其运算法则,是简单题.
解析∵| |= ,平方得 ,即 ,解得| |= 或 (舍)
(16)设函数 =的最大值为M,最小值为m,则M+m=____
命题意图本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.
解析 = ,
设 = = ,则 是奇函数,
∵ 最大值为M,最小值为 ,∴ 的最大值为M-1,最小值为 -1,
∴ , =2.
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知 , , 分别为 三个内角 , , 的对边, .
(Ⅰ)求 ;
(Ⅱ)若 =2, 的面积为 ,求 , .
命题意图本题主要考查正余弦定理应用,是简单题.
解析(Ⅰ)由 及正弦定理得
由于 ,所以 ,
又 ,故 .
(Ⅱ) 的面积 = = ,故 =4,
而 故 =8,解得 =2.
18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天 玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天 的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
命题意图本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.
解析(Ⅰ)当日需求量 时,利润 =85;
当日需求量 时,利润 ,
∴ 关于 的解析式为 ;
(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为
=76.4;
(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为
(19)(本小题满分12分)如图,三棱柱 中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(I) 证明:平面 ⊥平面
(Ⅱ)平面 分此棱柱为两部分,求这两部分体积的比.
命题意图本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
解析(Ⅰ)由题设知BC⊥ ,BC⊥AC, ,∴ 面 , 又∵ 面 ,∴ ,
由题设知 ,∴ = ,即 ,
又∵ , ∴ ⊥面 , ∵ 面 ,
∴面 ⊥面 ;
(Ⅱ)设棱锥 的体积为 , =1,由题意得, = = ,
由三棱柱 的体积 =1,
∴ =1:1, ∴平面 分此棱柱为两部分体积之比为1:1.
(20)(本小题满分12分)设抛物线 : ( >0)的焦点为 ,准线为 , 为 上一点,已知以 为圆心, 为半径的圆 交 于 , 两点.
(Ⅰ)若 , 的面积为 ,求 的值及圆 的方程;
(Ⅱ)若 , , 三点在同一条直线 上,直线 与 平行,且 与 只有一个公共点,求坐标原点到 , 距离的比值.
命题意图本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
解析设准线 于 轴的焦点为E,圆F的半径为 ,
则|FE|= , = ,E是BD的中点,
(Ⅰ) ∵ ,∴ = ,|BD|= ,
设A( , ),根据抛物线定义得,|FA|= ,
∵ 的面积为 ,∴ = = = ,解得 =2,
∴F(0,1), FA|= , ∴圆F的方程为: ;
(Ⅱ) 解析1∵ , , 三点在同一条直线 上, ∴ 是圆 的直径, ,
由抛物线定义知 ,∴ ,∴ 的斜率为 或- ,
∴直线 的方程为: ,∴原点到直线 的距离 = ,
设直线 的方程为: ,代入 得, ,
∵ 与 只有一个公共点, ∴ = ,∴ ,
∴直线 的方程为: ,∴原点到直线 的距离 = ,
∴坐标原点到 , 距离的比值为3.
解析2由对称性设 ,则
点 关于点 对称得:
得: ,直线
切点
直线
坐标原点到 距离的比值为 。
(21)(本小题满分12分)设函数f(x)= ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f?(x)+x+1>0,求k的最大值
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.
22. (本小题满分10分)选修4-1:几何选讲
如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:
(Ⅰ) CD=BC;
(Ⅱ)△BCD∽△GBD.
命题意图本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.
解析(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,
∵CF∥AB, ∴BCFD是平行四边形,
∴CF=BD=AD, 连结AF,∴ADCF是平行四边形,
∴CD=AF,
∵CF∥AB, ∴BC=AF, ∴CD=BC;
(Ⅱ) ∵FG∥BC,∴GB=CF,
由(Ⅰ)可知BD=CF,∴GB=BD,
∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD.
23. (本小题满分10分)选修4-4:坐标系与参数方程
已知曲线 的参数方程是 ( 是参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 :的极坐标方程是 =2,正方形ABCD的顶点都在 上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为 上任意一点,求 的取值范围.
命题意图本题考查了参数方程与极坐标,是容易题型.
解析(Ⅰ)由已知可得 , ,
, ,
即A(1, ),B(- ,1),C(―1,― ),D( ,-1),
(Ⅱ)设 ,令 = ,
则 = = ,
∵ ,∴ 的取值范围是[32,52].
24.(本小题满分10分)选修4-5:不等式选讲
已知函数 = .
(Ⅰ)当 时,求不等式 ≥3的解集;
(Ⅱ) 若 ≤ 的解集包含 ,求 的取值范围.
命题意图本题主要考查含绝对值不等式的解法,是简单题.
解析(Ⅰ)当 时, = ,
当 ≤2时,由 ≥3得 ,解得 ≤1;
当2< <3时, ≥3,无解;
当 ≥3时,由 ≥3得 ≥3,解得 ≥8,
∴ ≥3的解集为{ | ≤1或 ≥8};
(Ⅱ) ≤ ,
当 ∈[1,2]时, = =2,
∴ ,有条件得 且 ,即 ,
故满足条件的 的取值范围为[-3,0].
2022全国乙卷数学答案(文科):全国乙卷数学2022文数试卷及答案
这个题目主要是考察二次函数和对数函数的图像。答案是D。
若a>0时,由对称轴X=-b/2a A和D均有| -b/2a|<1/2 故|b/a|<1.故选D。
若a<0.同理可以排除B,C。
本题一定要熟悉二次函数和对数函数的性质!
2022年高考数学考试已经结束,本期为大家整理2022全国乙卷数学答案文科数学的相关内容,一起来看看全国乙卷数学2022年考试试卷真题及参考答案解析吧,供大家考试结束后估分、对答案使用。
2022年使用全国乙卷文科数学试卷的省份有:河南、山西、江西、安徽、甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西,共12省市区。
目前尚未收到官方公布的正式答案,以下答案仅供参考,后续我们将第一时间为大家替换官方参考答案