您现在的位置是: 首页 > 录取信息 录取信息
高考数学题解析几何_高考解析几何小题
tamoadmin 2024-05-18 人已围观
简介直线L:(X-1)/3=(Y-5)/3=(Z-3)/2的1个方向向量T={3,3,2}过点M,以T为法向量的平面Q的平面方程为3(X-1)+3(Y+1)+2(Z-1)=0.因,点(1+3t,5+3t,3+2t)在直线L上,将X=1+3t,Y=5+3t,Z=3+2t代入平面Q的方程,0=3(1+3t-1)+3(5+3t+1)+2(3+2t-1)=9t+18+9t+4+4t=22t+22,t=-1,得
直线L
:(X-1)/3
=
(Y-5)/3
=
(Z-3)/2
的1个方向向量T
=
{3,3,2}
过点M,以T为法向量的平面Q的平面方程为
3(X-1)
+
3(Y+1)
+
2(Z-1)
=
0.
因,
点(1
+
3t,5
+
3t,3
+
2t)在直线L上,
将X
=
1
+
3t,Y
=
5
+
3t,Z
=
3
+
2t代入平面Q的方程,
0
=
3(1
+
3t
-
1)
+
3(5
+
3t
+
1)
+
2(3
+
2t
-
1)
=
9t
+
18
+
9t
+
4
+
4t
=
22t
+
22,
t
=
-1,
得直线L与平面Q的交点坐标,
(1
-
3,5
-
3,3
-
2)
=
(-2,2,1)
设点M关于直线L的对称点的坐标为(A,B,C)
则点(-2,2,1)是点M和点(A,B,C)的中点,
A
+
1
=
2(-2),A
=
-5
B
-
1
=
2(2),B
=
-5
C
-
1
=
2(1),C
=
-3.
所以,
点(-5,-5,-3)就是点M关于直线L的对称点.
-----------------------
点A(u,-u,v)是平面
X
+
Y
=
0上的任一点.
直线L
:(X-1)/3
=
(Y-5)/3
=
(Z-3)/2
的1个方向向量T
=
{3,3,2}
过点A,以T为法向量的平面Q的平面方程为
3(X-u)
+
3(Y+u)
+
2(Z-v)
=
0.
因,
点(1
+
3t,5
+
3t,3
+
2t)在直线L上,
将X
=
1
+
3t,Y
=
5
+
3t,Z
=
3
+
2t代入平面Q的方程,
0
=
3(1
+
3t
-
u)
+
3(5
+
3t
+
u)
+
2(3
+
2t
-
v)
=
9t
+
3(1-u)
+
3(5+u)
+
9t
+
2(3-v)
+
4t
=
22t
+
24
-
2v,
t
=
(v
-
12)/11,
得直线L与平面Q的交点B的坐标,
(1
+
3(v-12)/11,5
+
3(v-12)/11,3
+
2(v-12)/11)
设点A关于直线L的对称点的坐标为(X,Y,Z)
则点B是点M和点(X,Y,Z)的中点,
(X,Y,Z)
=
2B
-
A
=
[2
+
6(v-12)/11
-
u,10
+
6(v-12)/11
+
u,6
+
4(v-12)/11
-
v]
=
[2
+
6(v-12)/11
-
u,10
+
6(v-12)/11
+
u,12
-
v
+
4(v-12)/11
-
6]
=
[2
+
6(v-12)/11
-
u,10
+
6(v-12)/11
+
u,-7(v-12)/11
-
6]
X
=
2
-
u
+
6(v-12)/11,
Y
=
10
+
u
+
6(v-12)/11,
Z
=
-6
-
7(v-12)/11
u
=
(Y-X-8)/2,
(v-12)/11
=
(X
+
Y
-
12)/12
=
[-6-Z]/7,
7(X+Y-12)+12(Z+6)
=
0,
7X
+
7Y
+
12Z
-
12
=
0
就是平面X+Y=0关于直线L的对称平面.