您现在的位置是: 首页 > 录取信息 录取信息
高考红蓝黄代表什么,高考伊红美蓝
tamoadmin 2024-05-14 人已围观
简介大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,周身鞭毛,能运动,无芽孢.主要生活在大肠内.能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素b和k,以及有杀菌作用的大肠杆菌素.正常栖居条件下不致病.它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、
大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,周身鞭毛,能运动,无芽孢.主要生活在大肠内.能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素b和k,以及有杀菌作用的大肠杆菌素.正常栖居条件下不致病.它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、膀胱炎及腹泻等.人在感染大肠杆菌后的症状为胃痛、呕吐、腹泻和发热.感染可能是致命性的,尤其是对孩子及老人.
在高中阶段同学们要掌握以下一些知识点(目前我能想到的).
1、大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体.
2、大肠杆菌的代谢类型是异养厌氧型(高中阶段是这样要求的).
3、人体与大肠杆菌的关系:在不致病的情况下(正常状况下),可认为是互利共生(一般高中阶段认为是这种关系);在致病的情况下,可认为是寄生.
4、培养基中加入伊红美蓝遇大肠杆菌,菌落呈深紫色,并有金属光泽,可鉴别大肠杆菌是否存在.
5、大肠杆菌在生物技术中的应用:大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,大规模发酵经济,倍受遗传工程专家的重视.目前大肠杆菌是应用最广泛,最成功的表达体系,常做高效表达的首选体系.
6、大肠杆菌在生态系统中的地位,假如它生活在大肠内,属于消费者,假如生活在体外则属于分解者.(一般在高中阶段很少考查到)
特别提醒:关于大肠杆菌超标的食品卫生问题应该引起高考同学们的重视.
专家提供:
回答者:景志国 - 高考生物 8-15 16:03
选修要点总结
90、稳态:神经系统、体液和免疫系统调节下,内环境的相对稳定
温度、pH、渗透压,水、无机盐、血糖等化学物质含量
血浆 7.35—7.45 缓冲对 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3细胞内液 组织液
91、65%体液 1/3细胞外液 血浆 淋巴
(内环境) 不是血液 血液>血浆>血清
食物 排尿
92、体内水来源 饮水 水排出途径 出汗 皮肤
代谢水(有氧呼吸)面虫、骆驼 呼气 肺
(氨基酸脱水缩合) 排遗 消化道
93、K不吃也排 不经过出汗排
肾上腺分泌醛固酮(固醇) 保Na排K
高温工作、重体力劳动、呕吐、腹泻→→应特别注意补充足够的水、Na(食盐)
细胞外液渗透压下降,出现四肢发冷、血压下降、心率加快
K对细胞内液细胞渗透压起决定作用,维持心肌紧张、心肌正常兴奋性 K心
94、血糖三来源(食物、分解、转化) 三去向
糖的主要功能:供能
胰岛素 唯一降血糖激素;增加糖的去路,减少糖的来源 胰高血糖素、 肾上腺素 升血糖
胰高血糖素促进胰岛素分泌,胰岛素却抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘脑某区域→胰岛B细胞 胰高血糖素↑ 肾上腺素↑
↓ ↑ ↑
胰岛素↑ 胰岛A细胞 肾上腺髓质
↓ ↑ ↑ 下丘脑另一区域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性摄糖过多,暂时尿糖 持续糖尿不一定糖尿病,如肾炎重吸收不行
糖尿病 血糖高且有糖尿 验尿验血 三多一少症状?
不吃少吃多吃含膳食纤维多的粗粮和蔬菜
95、营养物质:
蛋白质不足:婴幼儿、儿童、少年生长发育迟缓、体重过轻 成年人浮肿
提供能量
营养物质功能 提供构建和修复机体组织的物质
提供调节机体生理功能的物质
维生素:维持机体新陈代谢、某些特殊生理功能
VA:夜盲症
维生素 VB:脚气病
VC:坏血病
VD:佝偻病、骨软化病、骨质疏松症
96、温度感受器分为冷觉感受器和温觉感受器(分布皮肤、粘膜、内脏器官)
体温来自代谢释放热量(不是ATP提供),体温恒定是产热量,散热量动态平衡结果
寒冷 炎热
↓ ↓
皮肤冷觉感受器 温觉感受器 血管
↓传入神经 ↓ 立毛肌
下丘脑体温调节中枢 下丘脑 骨骼肌
传出神经 ↓ 汗
皮肤血管收缩 骨骼肌战粟(产能特多) 血管舒张
皮肤立毛肌收缩 皮肤立毛肌收缩 汗液分泌增多
↓鸡皮疙瘩 肾上腺素↑
缩小汗毛孔 甲状泉激素↑
减少散热 增加产热 散热量增加 不能减少产热
调节水分、血糖、体温
97、下丘脑 分泌激素:促激素释放激素 抗利尿激素
感受刺激:下丘脑渗透压感受器
传导兴奋:产生渴觉
第一道防线:皮肤、粘膜等
非特异性免疫(先天免疫)第二道防线:体液中杀菌物质、吞噬细胞
98、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫
在特异性免疫中发挥免疫作用的主要是淋巴细胞
淋巴细胞的起源和分化:胸腺—T 骨髓—B
免疫细胞:B、T
免疫系统的物质基础 免疫器官:扁桃体、淋巴结、脾
免疫物质:抗体、淋巴因子(白介素、干扰素)
99、抗原特点:①一般异物性 但也有例外:如癌细胞、损伤或衰老的细胞
②大分子性
③特异性 抗原决定簇(病毒的衣壳)
100、体液免疫: 记忆细胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬细胞→→T细胞→→B细胞→→→效应B细胞→→→抗体
↑ (摄取处理) (呈递) (识别)
感应阶段 反应阶段 效应阶段
效应B细胞产生:抗体(免疫球蛋白)、抗毒素、凝集素
效应T细胞产生:淋巴因子、干扰素、白细胞介素
识别抗原:B细胞、效应T细胞、记忆B/T
效应B细胞获得有三途径(直接、间接、记忆)
记忆细胞受相同抗原再次刺激后引起的二次免疫反应:更迅速、更强
再次接受过敏原(概念)
过敏反应 抗体分布 细胞表面
组织胺:体液调节
101、免疫失调引起的疾病 自身免疫疾病:风湿…类风湿…系统性红斑狼疮
先天性:先天性胸腺发育不全
免疫缺陷病 获得性:艾滋病、肺炎、气管炎
(人类免疫缺陷病毒) HIV↓攻击T细胞
(AIDS) 获得性免疫缺陷综合症
102、色素吸收、传递、转换光能 色素不能储存光能
蛋白质、氨基酸也不能储存
少数特殊状态叶绿素a 最终电子供体:水
高能量、易失电子 光能→ 电能 最终电子受体:NADP+
103、C4植物:玉米、高梁、甘庶、苋菜
既C3又C4 CO2固定能力强 先CO2+C3→C4
C3、C4叶肉细胞都含正常叶绿体
选修 C3维管束鞘细胞无叶绿体
图 C4维管束鞘细胞含无基粒的叶绿体 不进行光反应
(P29) C4植物花环型结构 里圈:维管束鞘细胞 外圈:部分叶肉细胞
降低呼吸消耗 增加净光合量
104、提高产量 延长光合作用时间 光:光质、强度、长短
提高农作物对 增大光合作用面积 温度:影响酶的活性
光能利用率 提高光合作用效率 水
矿质元素 N、P、K、Mg
CO2 农家肥、CO2发生器
105、生物固氮:N2 → NH3
根瘤菌的特异性:蚕豆根瘤菌侵入蚕豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有机物 豆科植物 异养需氧
共生固氮菌 根瘤 薄壁细胞 愈伤组织
固氮菌 自生≠自养 根瘤菌拌种 豆科植物绿肥
自生固氮菌:圆褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工业固氮 高能固氮
106、N循环 硝化、反硝化、氨化作用
反硝化:氧气不足NO3-→N2
自生固氮菌的分离原理:无氮培养基对固氮菌的选择生长
物质基础:线粒体、叶绿体中的DNA(质基因)
…线粒体
107、细胞质遗传 典型代表 …叶绿体 花斑植株→三种
特点 母系遗传(受精卵中的细胞质几乎全来自卵细胞)
后代性状不出现一定分离比
(形成配子时,质基因不均等分配)
编码区:编码蛋白质 连续的
原核细胞 非编码区 编码区上游:RNA聚合酶结合位点
基因结构 调控 编码区下游
108、基因的结构 真核细胞 非编码区
基因结构 编码区 内含子:非编码序列
外显子:能编码蛋白质内含子>外显子
原核基因无外显子内含子之说
主要分布于微生物
剪刀:限制性内切酶 特异性(专一性)
(200多种) 获得粘性末端
109、基因的操作工具 针线:DNA连接酶:扶手(磷酸二脂键)不是踏板(氢键)
条件①复制保存②多切点③标记基因
种类:质粒、病毒
运输工具:运载体 ①染色体外小型环状DNA
②存在于细菌、酵母菌
质粒特点 ③质粒是常用的运载体
④最常用:大肠杆菌
⑤对宿主细胞的生存无
基因工程 (基因拼接技术、DNA重组技术、转基因技术) 决定性作用
直接分离 常用鸟枪法
提取目的基因 人工合成(反转录法、根据已知AA序列合成DNA)
目的基因与运载体结合 同一种限制酶
110、基因操作步骤 将目的基因导入受体细胞→细菌、酵母菌、动植物
CaCl2处理细胞壁 ( 受精卵好 繁殖速度快)
目的基因的检测和表达:标记基因、目的基因是否表达?
逆转录 碱基互补配对
mRNA 单链DNA 双链DNA
推测 推测 合成
氨基酸序列 mRNA序列 DNA碱基序列 目的基因
药(胰岛素、干扰素、白细胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因诊断与基因治疗(基因替换)
新品种(转基因) 食品工业(食物)
环境监测(DNA分子杂交 探针)
生物固氮、基因诊断、基因治疗、单细胞蛋白(微生物菌体本身)、
单克隆抗体、生物导弹(单抗+抗癌药物)
112、 间接联系 核心 核膜
高尔基体 内质网 细胞膜
线粒体膜
间接(具膜小泡) (内吞外排说明双向)
分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外
粗面内质网上的核糖体 内质网运输加工 高尔基体加工 成熟蛋白质 胞外
113、生物膜系统(不等于生物膜):细胞膜、核膜及由膜围绕而成的细胞器
离体→营养物质+激素 适宜温度+无菌
植物组织培养 离体→愈伤组织→根芽(胚状体)→植物体
选无病毒 尖(生长点) 紫草素
114、植物细胞工程 两种不同→杂种细胞→新植物体
植物体细胞 去掉细胞壁→原生质体→杂种细胞→新植物体
杂交 种间存在生殖隔离 不能有性杂交
好处:克服远源杂交不亲和障碍 培育新品种
是其它动物细胞工程技术的基础
动物细胞培养 液体培养基:动物血清
115、 动 取自动物胚胎或出生不久的幼龄动物的器官或组织
物 用胰蛋白酶处理
细 原代培养→传代培养(细胞株→细胞系 遗传物质发生改变)
胞 灭活的病毒做诱导剂+物理、化学方法
工 动物细胞融合 最重要用途:制备单克隆抗体
程 理论基础:细胞膜的流动性
单克隆抗体→指单个B淋巴细胞经克隆形成的细胞群产生的化学性质单一、特异性强的抗体(优点:特异性强、灵敏度高)。每一个B淋巴细胞只分泌一种特异性抗体(共百万种) *杂交瘤细胞 *生物导弹
116、微生物包含了除植物界和动物界以外的所有生物
质粒(小型环状DNA)控制抗药性、固氮、抗生素生成
核区(大型环状DNA)控制主要遗传性状 有的细菌有荚膜、芽孢、鞭毛
碳源:无机/有机碳源 自养/异养
117、 微生物生长 氮源:加不加额外的氮源
所需的营养物质 生长因子:(维生素、氨基酸、碱基→构成酶和核酸)
水:
无机盐:
固体培养基:分离、鉴定、计数
物理性质 半固体培养基:运动、保藏菌种
液体培养基:工业生产
118、培养基 天然培养基:工业生产
化学性质 合成培养基:分类鉴定
选择培养基 青霉素→选出酵母菌、霉菌等真菌
用途 NaCl:金**葡萄球菌
鉴定培养基:伊红美蓝→大肠杆菌→深紫色和金属光泽
自己设计实验:把混合在一起的圆褐固氮菌、硝化细菌、大肠杆菌区分开,并筛选纯种。
酶合成的调节 诱导酶:基因和诱导物控制
119、微生物代谢调节 酶活性的调节 结构改变 可逆 快速 准确
必需物质,一直产生 氨基酸、核苷酸、维生素
初级代谢产物 无种的特异性 多糖、脂类
120、代谢产物 非必需物质,一定阶段 抗生素、毒素
次级代谢产物 有种的特异性 四素 色素、激素
121、微生物群体生长曲线: 3
2 4
1
(1)调整期:代谢活跃,开始合成诱导酶 初级代谢产物收获的最佳时期
(2)对数期:形态和生理特性稳定,代谢旺盛;科研用菌种,接种最佳时期
(3)稳定期:次级代谢产物收获最佳时期,芽孢生成(种内斗争最剧烈)
及时补充营养物质,可以延长稳定期
(4)衰亡期:多种形态,出现畸形,释放次级代谢产物 生存环境恶劣
与无机环境斗争最激烈的是4衰亡期。
营养物质消耗有害代谢产物积累PH不适宜导致3.4时期的出现。
注意:前三个时期类似“S”型增长曲线,但是多了衰亡期
122、影响微生物生活的环境因素
PH值:影响酶的活性、细胞膜的稳定性,从而影响微生物对营养物质的吸收
温度:影响酶和蛋白质的活性
O2浓度:产甲烷杆菌
123、高压蒸汽灭菌法:1/5、1/2、2/3、75% 由里向外、细密、不重复
溶化后分装前必须要 调节pH
细菌培养的过程:培养基的配制→灭菌→搁置斜面→接种→培养观察
实例:谷氨酸发酵(**短杆菌、谷氨酸棒状杆菌)
概念:
菌种选育:诱变育种、基因工程、细胞工程
培养基的配制:成分、比例,pH适宜
124、发酵工程 内容 灭菌:去除杂菌
扩大培养和接种:菌种多次培养达到一定数量
发酵过程:(中心阶段)控制各种条件,生产发酵产品
分离提纯 菌体:过滤、沉淀(单细胞蛋白即微生物菌体本身)
代谢产物:蒸馏、萃取、离子交换
应用 医药工业:生产药品和基因工程药品
食品工业:传统发酵产品、食品添加剂、单细胞蛋白等
125、 C/N=4/1 菌体大量繁殖但产生的谷氨酸少(P79)
记住 C/N=3/1 菌体繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 产生乳酸或琥珀酸
pH呈酸性: 产生乙酰谷氨酰胺(P95)