您现在的位置是: 首页 > 录取信息 录取信息

高考数学题型归纳总结,高考数学题型归纳

tamoadmin 2024-06-10 人已围观

简介1.高考数学常考必考题型是什么?2.数学高考题型全归纳是什么?3.高考数学应该着重复习哪些题型?4.高考数学中, 选择题的命题规律及常用的6大技巧及例题!5.高考数学题型与技巧是什么?6.高考数学参数方程题型高考数学大题6大题型是:1、三角函数、向量、解三角形(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性(平面向量背景)。(3)正弦定理、余弦定理、解三角形背景。(4)综合题

1.高考数学常考必考题型是什么?

2.数学高考题型全归纳是什么?

3.高考数学应该着重复习哪些题型?

4.高考数学中, 选择题的命题规律及常用的6大技巧及例题!

5.高考数学题型与技巧是什么?

6.高考数学参数方程题型

高考数学题型归纳总结,高考数学题型归纳

高考数学大题6大题型是:

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。

(2)向量的工具性(平面向量背景)。

(3)正弦定理、余弦定理、解三角形背景。

(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。

重视三角恒等变换下的性质探究,重视考查图形图像的变换。

2、概率与统计

(1)古典概型。

(2)茎叶图。

(3)直方图。

(4)回归方程。

(5)(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能 性事件、互斥事件、独立事件的概率计算公 式,难度不算很大。

3、立体几何

(1)平行。

(2)垂直。

(3)角。

(4)利用三视图计算面积与体积。

(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。

(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。

(3)错位相减法、裂项求和法。

(4)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。

(2)圆的方程,圆与直线的位置关系。

(3)注重椭圆与圆、椭圆与抛物线等的组合题。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。

(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。

(3)利用基本不等式、对勾函数性质。

高考数学常考必考题型是什么?

对于高考数学来说,想要拿到高分,就需要了解数学中的高频考点,这样才能够提高分数,我为大家整理了一些。

高考数学排列组合经典大题题型

1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8. 会计算事件在n次独立重复试验中恰好发生k次的概率。

高考数学三角函数或数列高频考点

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

数学高考题型全归纳是什么?

高考数学常考的大题分别是三角函数或数列,概率,立体几何,解析几何(圆锥曲线),函数与导数。

高考数学必考知识点归纳:

必修一:集合与函数的概念(部分知识抽象,较难理解);基本的初等函数(指数函数、对数函数);函数的性质及应用(比较抽象,较难理解)。

必修二:立体几何、证明:垂直(多考查面面垂直)、平行求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分。

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。

3、圆方程。

平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

文科:选修1—1、1—2。

选修1--1:重点:高考占30分。

1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。

选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。

理科:选修2—1、2—2、2—3。

选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。

选修2--2:1、导数与微积分;2、推理证明:一般不考3、复数。

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分;2、随机变量及其分布:不单独命题;3、统计。

高考数学应该着重复习哪些题型?

数学高考题型全归纳:

第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析。

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何。

高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

高考数学中, 选择题的命题规律及常用的6大技巧及例题!

高考数学的复习应该着重于理解和掌握各种题型,包括但不限于以下几种:

1.选择题:这种题型主要考察学生的基本知识和理解能力。复习时,要确保对每个知识点都有深入的理解,并能够灵活运用。

2.填空题:这种题型主要考察学生的计算能力和对知识点的掌握程度。复习时,要重点复习相关的公式和定理,并熟练掌握其应用。

3.解答题:这种题型主要考察学生的解题能力和逻辑思维能力。复习时,要重点练习各种类型的题目,提高解题技巧和速度。

4.证明题:这种题型主要考察学生的证明能力和逻辑思维能力。复习时,要重点复习相关的证明方法和技巧,并多做相关的练习题。

5.应用题:这种题型主要考察学生的应用能力和解决问题的能力。复习时,要重点理解问题的背景和要求,然后选择合适的方法进行解答。

总的来说,高考数学的复习应该是全面的,不仅要掌握各个知识点,还要熟悉各种题型的解法和技巧。

高考数学题型与技巧是什么?

解答高考选择题既要求准确破解,又要快速选择,正如高冠教育(ggedu21)明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。

一、高考数学选择题命题规律如下:

1、函数与导数

2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。

2.三角函数与平面向量

小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.

3.数列

2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推为主.

4.解析几何

2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.

5.立体几何

2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计

2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.

7.不等式

小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如集合、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。

8.算法与推理

程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理题偶尔会出现一个。

二、高考数学选择题6大答题技巧

答题口诀:

(1)、小题不能大做

(2)、不要不管选项

(3)、能定性分析就不要定量计算

(4)、能特值法就不要常规计算

(5)、能间接解就不要直接解

(6)、能排除的先排除缩小选择范围

(7)、分析计算一半后直接选选项

(8)、三个相似选相似

1、特殊值法

方法思想:通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误答案,选取正确选项。

2、估算法

方法思想:当选项差距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出答案的大概范围或者近似值,然后选取与估算值最接近的选项。

[注意]:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误差。

3、逆代法

方法思想:充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项.

4、特殊情况分析法

方法思想:当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确答案。

5、算法简化

方法思想:定性分析代替定量计算,根据题型结构简化计算过程,在一定程度上帮助我们加快了解题速度。

通过下面几个例题的讲解,我们不仅要掌握方法,更重要的是要去体会这种思想,做到活学活用。

6、特殊推论

高考数学参数方程题型

可以是:

一、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列。

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法。如果两端都是含n的式子,一般考虑数学归纳法,如何把当前的式子转化到目标式子,一般进行适当的放缩。

3、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。

二、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单。

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系。

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

三、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数。

2、搞清是什么概率模型,套用哪个公式。

3、记准均值、方差、标准差公式。

4、注意计数时利用列举、树图等基本方法。

5、注意放回抽样,不放回抽样。

6、注意零散的知识点(茎叶图、频率分布直方图、分层抽样等)在大题中的渗透。

四、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法。

2、注意直线的设法,知道弦中点时,往往用点差法,注意自变量的取值范围。

高考数学参数方程是一种常见的数学题型,它通常涉及一些具有特定参数的方程或不等式,要求考生根据参数的范围或条件来求解方程或不等式的解。

以下是一些高考数学参数方程题型的解题思路和方法:

1.了解参数的意义和作用:在解决参数方程问题之前,首先需要了解参数的意义和作用。参数通常是一种用来描述某个问题或者某种关系的数值或变量,它可以是数字、字母或者其他数学对象。在参数方程中,参数通常会出现在方程的系数、指数、根式等位置,对于不同位置的参数需要进行分类讨论,明确参数的范围和作用。

2.选择适当的参数方程形式:在解决参数方程问题时,需要根据具体问题选择适当的参数方程形式。常见的参数方程形式包括一元二次方程、一元高次方程、二元二次方程组、指数方程、对数方程等。在选择参数方程形式时,需要考虑方程的特点、参数的范围和作用,以及具体的解题需求。

3.利用参数的限制条件:在参数方程问题中,参数通常受到一些限制条件,如参数的范围、取值方式等。在解题时,需要充分利用这些限制条件,缩小参数的范围或者确定参数的值。同时,还需要注意参数的取值是否具有实际意义,避免出现不符合实际的解。

4.分类讨论:在解决参数方程问题时,经常需要对参数进行分类讨论,以确定不同情况下的解。分类讨论可以按照参数的取值范围、方程的形式、方程的性质等特点进行分类,需要注意分类的完整性、分类的合理性和不重不漏的原则。

5.转化和化简:在解决参数方程问题时,经常需要对方程进行转化和化简。转化和化简的目的是将复杂的方程转化为简单的形式,或者将多个方程转化为一个简洁的表达式。在转化和化简过程中,需要注意符号、根式、指数等细节问题,避免出现错误。

6.求解方程或不等式的解:在解决参数方程问题时,最终目的是求解方程或不等式的解。在求解过程中,需要根据具体的问题选择适当的求解方法,如因式分解、求根公式、不等式求解等。同时,还需要注意解的存在性、唯一性、合理性等问题,避免出现不符合实际的解。

文章标签: # 高考 # 数学 # 参数