您现在的位置是: 首页 > 录取信息 录取信息
高考2017二卷数学_2017高考题全国二卷数学
tamoadmin 2024-06-08 人已围观
简介1.2017年浙江高考数学试卷19题怎么解2.2017年江苏高考数学试卷结构 各题型分值是多少分3.2017年重庆高考理科数学试卷结构 各题型分值是多少分4.数学选择题蒙题技巧大全5.2017年数学高考卷子的六道大题2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。2017年江苏数学试卷在“稳中求进”中具体知识点有变化。1.体现新课
1.2017年浙江高考数学试卷19题怎么解
2.2017年江苏高考数学试卷结构 各题型分值是多少分
3.2017年重庆高考理科数学试卷结构 各题型分值是多少分
4.数学选择题蒙题技巧大全
5.2017年数学高考卷子的六道大题
2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。2017年江苏数学试卷在“稳中求进”中具体知识点有变化。
1.体现新课标理念,实现平稳过渡。试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。对传统内容的考查在保持平稳的基础上进行了适度创新。如第7题首次考查几何概型概率问题。
2.关注通性通法。试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。 如第17题解析几何考查两直线交点以及点在曲线上。第20题以极值为载体考查根与系数关系、三次方程因式分解。第19题以新定义形式多层次考查等差数列定义。
3.体现数学应用,关注社会生活。第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。
4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。
2017年浙江高考数学试卷19题怎么解
作为修订考纲后的首考,试卷整体与2016年相比试题分布略有差异,试题难度有所上升。试题风格与近几年全国Ⅱ卷较为相符,还是严格遵循考纲,注重基础,忠实于教材,以基础知识为考查重点,命题方向较为稳定,考察的知识分布均衡,很好地体现了对学生物理科学素养的考察,特别是体现了高中新课程探究性学习的理念和联系实际生活的理念,对中学物理教学起到很好的导向作用。试卷整体难度与2016相比有所上升。以下,笔者将从不同层面剖析本次高考试题。
试题分析
试题结构变动微弱
虽然教育部考试中心下发的《关于2017年普通高考考试大纲修订内容的通知》(教试中心函〔2016〕179号),将选修3-5列为必考内容,但对试题结构并无明显影响。本次物理试题依然保持了选择题+实验题+解答题+选做题的模式,分值比例仍为必做题95分,选做题15分,总计110分。
选修3-5模块出题简单
表1·新加入选修3-5必做题模块分析
从今年开始选修3-5从选考题模块转战到了必做题模块,考试大纲对于其中的动量模块给予的是Ⅱ级要求,而对于原子物理部分给予的是Ⅰ级要求,本次试题,动量及原子物理原子模块在一道选择题中体现,难度不大,证明首次将选修3-5加入必考模块,还是处于尝试阶段。
动力学、电磁学模块难分伯仲
表2·动力学与电磁学两大主干知识点考查配比
动力学模块和电磁学模块历来是高考物理的两个主要模块,纵观近几年高考物理试题,两大模块所占比重基本相当。但从发展趋势来看,2014年之前的高考,电磁模块分值略占上风;而从最近的2015年、2016年两年来看,动力学分值较电磁学相比较高,但今年分值基本持平,2015年、2016年两年压轴题均为动力学问题,而今年压轴题改为电磁学,且难度较大。
试题难度上升,难易分布明显
表3·必做题部分考察难度分布
试题难度较去年有提高,试卷整体计算量较大,难题部分较去年难度提高较大,且集中于电磁模块,主要分布在电学实验题与压轴题。例如23题电学实验,主体为测量电流表内阻。实验原理较为新颖,实验电路不常见,主要考察学生对变式实验与新型实验探究的能力。25题难度较大,模型为带电粒子在电场与重力场的复合、组合场中运动,题目逻辑链较长、所给已知量较少。主要考察学生的字母运算能力,以及在简单物理模型的基础上寻求巧妙方法的能力。
总结
纵观全卷,学而思高考研究中心认为物理试题的分布满足由易到难、由浅入深的原则。在选择题中,重点考查基础知识和基本运算;实验题中,考查学生的思维能力与探究能力;解答题中,重点考查分析综合能力,试卷整体难度梯度明显,计算量较大,着重考查运用数学工具解决物理问题的能力。
2017年江苏高考数学试卷结构 各题型分值是多少分
2017年浙江省高考数学试卷,延续了浙江省多年的数学命题特色,简约中显大气,朴实中有灵气。
试题情景熟悉,充分考查了学生的数学素养、思维品质与学习潜能,体现出较强的区分度和选拔功能。
今年的数学高考试卷,是浙江省自主命题以来出得好的试卷之一。试题立足基础知识、基本技能,一路下来行云流水,拾阶而上。试题体现了很好的区分度,基本上会让考生有多少水平就能拿多少分。
试卷注重对能力的考查,强调数学思维与本质,要求深刻理解概念,并能合理转化、灵活运用。如选择题第9、10题,填空题第17题,解答题第20、21、22题,设问层次递进,这样的设计,对不同的基础、不同的能力水平的学生都提供了适当的思考空间,体现了较好的区分度,凸显了试卷的选拔功能。但想顺利解决,需要学生具有较强的思维能力和解题能力。
2017年重庆高考理科数学试卷结构 各题型分值是多少分
1-14是填空题,每题5分,15-20是解答题,前三题每题14分,后三题每题16分,每个解答题有2到3小题,共160分。
理科还有附加题,第21题是四选二,21a是平面几何证明,21b是矩阵,21c是坐标系与参数方程,21d是不等式,考生从四条中选两题作答,每题10分,满分20分。22和23题不确定,可以考概率分布,空间向量,解析几何(侧重抛物线),计数原理,数学归纳法,二项式定理等,也是每题10分,附加题一共40分。
数学选择题蒙题技巧大全
12个选择题(5分一个),4个填空题(5分一个),17题三角函数和解三角形或数列(12分),18、19空间几何、统计(12分),20解析几何(12分),21倒数(12分),22、23二选一解不等式或参数方程(10分)
2017年数学高考卷子的六道大题
数学是很多人的一个难题,下面是我整理的一些蒙题技巧,希望能对大家有所帮助。
高考数学蒙题技巧守则
1、答案有根号的,不选
2、答案有1的,选
3、三个答案是正的时候,在正的中选
4、有一个是正X,一个是负X的时候,在这两个中选
我推荐: 2017年高考全国二卷文科数学答题模板
5、题目看起来数字简单,那么数学答案选复杂的,反之亦然
6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条
7、数学答题答得好,全靠眼睛瞟
8、以上都不实用的时候选B
高考数学蒙题技巧数学函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案!
数学经验法:在数学排序或者有规律的题目也使用。首先比如求三角形面积。你看答案里a:12,b,13,c:6,d:11.第一,12,13,11明显是拼凑的错误答案。第二肯定有陷阱是三角形面积忘记除以2,所以c的答案正确率高。
代入法,这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。但是如果是选择题,你可以取a=0.5,b=1.5试一试。还有就是可以把选项里的答案带到题目中的式子来计算。
高三数学怎么复习数学的基础知识理解与掌握,基本的数学解题思路分析与数学方法的运用,是第一轮复习的重中之重。对知识点进行梳理,形成完整的知识体系,确保基本概念、公式等牢固掌握。要扎扎实实,对每个知识点都要理解透彻,明确它们要求以及与其他知识之间的联系。
复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径,要做到“两先两后”,即先预习后听课,先复习后作业。以提高听课的主动性,减少听课的盲目性。
而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。预习还可以培养自己的自学能力。
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)?讨论的单调性;
(2)?若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.