您现在的位置是: 首页 > 教育研究 教育研究

江苏高考数学真题2014-2014江苏高考数学大纲

tamoadmin 2024-08-17 人已围观

简介1.求09江苏高考数学大纲!2.江苏!春季高考,语数外的重点知识点!是哪些,以及,它们所占分值?3.高考数学命题内容变化?求09江苏高考数学大纲!2009年普通高等学校招生全国统一考试(江苏卷)数学考试说明一、命题指导思想 2009年普通高等学校招生全国统一考试数学科(江苏卷)命题将遵循教育部考试中心颁发的《普通高等学校招生全国统一考试(数学科)大纲》精神,依据教育部《普通高中数学课程标准(实验

1.求09江苏高考数学大纲!

2.江苏!春季高考,语数外的重点知识点!是哪些,以及,它们所占分值?

3.高考数学命题内容变化?

求09江苏高考数学大纲!

江苏高考数学真题2014-2014江苏高考数学大纲

2009年普通高等学校招生全国统一考试(江苏卷)数学考试说明

一、命题指导思想

2009年普通高等学校招生全国统一考试数学科(江苏卷)命题将遵循教育部考试中心颁发的《普通高等学校招生全国统一考试(数学科)大纲》精神,依据教育部《普通高中数学课程标准(实验)》和江苏省《普通高中课程标准教学要求》,既考查中学数学的基础知识和方法,又考查考生进入高等学校继续学习所必须的基本能力。

1.突出数学基础知识、基本技能、基本思想方法的考查

对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查。

2.重视数学基本能力和综合能力的考查

数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力。

(1)空间想象能力是对空间图形的观察、分析、抽象的能力。考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合。

(2)抽象概括能力的考查要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断。

(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真性。

(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算。

(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题。

数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题。

3.注重数学的应用意识和创新意识的考查

数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决。

创新意识的考查,要求能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题。

二、考试内容及要求

数学试卷由必做题与附加题两部分组成。选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答。必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题)。

对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示)。

了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题。

理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题。

掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题。

具体考查要求如下:

1.必做题部分

内 容 要 求

A B C

1.集合 集合及其表示 √

子集 √

交集、并集、补集 √

2.函数概念与基 本初等函数Ⅰ 函数的有关概念 √

函数的基本性质 √

指数与对数 √

指数函数的图象和性质 √

对数函数的图象和性质 √

幂函数 √

函数与方程 √

函数模型及其应用 √

3.基本初等函数Ⅱ (三角函数)、三角恒等变换 三角函数的有关概念 √

同角三角函数的基本关系式 √

正弦、余弦的诱导公式 √

正弦函数、余弦函数、正切函数的图象和性质 √

函数 的图象和性质 √

两角和(差)的正弦、余弦和正切 √

二倍角的正弦、余弦和正切 √

几个三角恒等式 √

4.解三角形 正弦定理、余弦定理及其应用 √

5.平面向量 平面向量的有关概念 √

平面向量的线性运算 √

平面向量的坐标表示 √

平面向量的的数量积 √

平面向量的平行与垂直 √

平面向量的应用 √

6.数列 数列的有关概念 √

等差数列 √

等比数列 √

7.不等式 基本不等式 √

一元二次不等式 √

线性规划 √

8.复数 复数的有关概念 √

复数的四则运算 √

内 容 要 求

A B C

8.复数 复数的几何意义 √

9.导数及其应用 导数的概念 √

导数的几何意义 √

导数的运算 √

利用导数研究函数的单调性和极大(小)值 √

导数在实际问题中的应用 √

10.算法初步 算法的有关概念 √

流程图 √

基本算法语句 √

11.常用逻辑用语 命题的四种形式 √

必要条件、充分条件、充分必要条件 √

简单的逻辑联结词 √

全称量词与存在量词 √

12.推理与证明 合情推理与演绎推理 √

分析法和综合法 √

反证法 √

13.概率、统计 抽样方法 √

总体分布的估计 √

总体特征数的估计 √

变量的相关性 √

随机与概率 √

古典概型 √

几何概型 √

互斥及其发生的概率 √

统计案例 √

14.空间几何体 柱、锥、台、球及其简单组成体 √

三视图与直视图 √

柱、锥、台、球的表面积和体积 √

15.点、线、面之间的位置关系 平面及其基本性质 √

直线与平面平行、垂直的判定与性质 √

两平面平行、垂直的判定与性质 √

16.平面解析几何初步 直线的斜率和倾斜角 √

直线方程 √

直线的平行关系与垂直关系 √

两条直线的交点 √

两点间的距离、点到直线的距离 √

圆的标准方程和一般方程 √

内 容 要 求

A B C

16.平面解析几何初步 直线与圆、圆与圆的位置关系 √

空间直角坐标系 √

17.圆锥曲线与

方程 椭圆的标准方程和几何性质(中心在坐标原点) √

双曲线的标准方程和几何性质(中心在坐标原点) √

抛物线的标准方程和几何性质(顶点在坐标原点) √

2.附加题部分

内 容 要 求

A B C

选修系列2

:不含选修系列1

容 1.圆锥曲线与方程 曲线与方程 √

抛物线的标准方程和几何性质(顶点在坐

标原点) √

2.空间向

量与立体几何 空间向量的有关概念 √

空间向量共线、共面的充分必要条件 √

空间向量的线性运算 √

空间向量的坐标表示 √

空间向量的数量积 √

空间向量的共线与垂直 √

直线的方向向量与平面的法向量 √

空间向量的应用 √

3.导数及其应用 简单的复合函数的导数 √

定积分 √

4.推理与证明 数学归纳法的原理 √

数学归纳法的简单应用 √

5.计数

原理

分类加法计数原理 √

分步乘法计数原理 √

排列与组合 √

二项式定理 √

6.概率

统计 离散型随机变量及其分布列 √

超几何分布 √

条件概率及相互独立 √

次独立重复试验的模型及二项分布 √

离散型随机变量的均值和方差 √

内 容 要 求

A B C

选 修

4

4

7.几何证

明选讲 相似三角形的判定和性质定理 √

射影定理 √

圆的切线的判定和性质定理 √

圆周角定理,弦切角定理 √

相交弦不定期理、割线定理、切割线定理 √

圆内接四边形的判定与性质定理 √

8.矩阵与变换 矩阵的有关概念 √

二阶矩阵与平面向量 √

常见的平面变换 √

矩阵的复合与矩阵的乘法 √

二阶逆矩阵 √

二阶矩阵的特征值和特征向量 √

二阶矩阵的简单应用 √

9.坐标系与参数方程 坐标系的有关概念 √

简单图形的极坐标方程 √

极坐标方程与直角坐标方程的互化 √

参数方程 √

直线、圆和椭圆的参数方程 √

参数方程与普通方程的互化 √

参数方程的简单应用 √

10.不等式选讲 不等式的基本性质 √

含有绝对值的不等式的求解 √

不等式的证明(比较法、综合法、分析法) √

几个著名不等式 √

利用不等式求最大(小)值 √

数学归纳法与不等式 √

三、考试形式及试卷结构

(一)考试形式

闭卷、笔试,试题分必做题和附加题两部分。必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟。

(二)考试题型

1.必做题 必做题部分由填空题和解答题两种题型组成。其中填空题14小题,约占70分;解答题6题,约占90分。

2.附加题 附加题部分由解答题组成,共6题。其中,必做题2题,考查选修系列2(不含选修系列1)中的内容;选做题共4题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生从中选2题作答。

填空题只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤。

(三)试题难易比例

必做题部分由容易题、中等题和难题组成。容易题、中等题和难题在试卷中的比例大致为4:4:2。

附加题部分由容易题、中等题和难题组成。容易题、中等题和难题在试卷中的比例大致为5:4:1。

江苏!春季高考,语数外的重点知识点!是哪些,以及,它们所占分值?

江苏春季高考语数外知识点

语文学科

在春考中,有以下内容是高考中没有出现过的题型,也是公校老师没有讲过的内容,共占有22分的分值,比重比较大。

题型

分值

知识点

字音、词语运用、标点、修改病句

8

字音、词语运用、标点使用、病句修改

语言运用题(为语段拟写标题并提出建议)

8

语言概括

论据写作

6

论据选用

英语学科

在江苏春季高考中,以下题型是高考没有出现过的题型,同时也是公校老师授课内容不会涉及到的题型,总分为24分,所占比重较大,还请家长和学生引起关注和认真准备!

题型

分值

知识点

语法单项选择题

10

名词性从句&定语从句&状语从句

阅读理解填空题

8

搜集语篇信息能力&单词拼写能力

英语翻译补全题

6

分析句型结构能力&翻译能力

数学学科

从知识点方面看,春考涵盖到的,高考都涵盖了。前120分学业水平考的题的要求明显低于高考要求。只有后30分是“按照高考要求命题”的。但是有一点,因为高考分为文理科,春考不分科。所以一些本是高考理科要求的题,放在了春考试卷中。

若是文科生参加春考,就可能没有学过这方面的内容。比江苏2014年春考的30分里面第一题,“判断是什么圆锥曲线”用到了参数方程的方法“化参数方程为普通方程”。而文科生的教材中并未出现这种方法。

从题型方面看,高考中的小题不会纯考概念,而春考(学业水平考部分)则出现了纯概念题(23题)。另外春考的大题出现了稍难的单纯是考解三角形的应用题,这是高考的应用题不会单独考的。

高考数学命题内容变化?

1.改革后的《考试大纲》中不再设置选考内容,所有内容为必考内容。将现行《考试大纲》选考内容中的“不等式选讲”列为必考内容,其他两部分内容“几何证明选讲”和“坐标系与参数方程”不再列为考试内容。

2.数学考试内容根据本科院校的招生要求和不分文理科的考试要求,在现行理科内容的基础上,删除数学归纳法、定积分、微积分基本定理等内容。(这部分内容知识是学生进入高校后需要重点学习的,在中学教学中所占比重不大,删除这部分内容知识,不影响中学数学知识体系的完整性,有利于减轻中学学生负担。)

3.文理不分科后的数学试卷,与现行文科数学相比,增加空间向量、计数原理和随机变量等内容。

文章标签: # 内容 # 数学 # 方程