您现在的位置是: 首页 > 教育研究 教育研究

2017高考数学考试文科,2017年高考数学文科试卷

tamoadmin 2024-06-11 人已围观

简介1.高考文科几天考完2.文科是哪几科?理科呢?3.高考数学文科范围4.高考文科数学试卷和理科数学试卷一样吗? 高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢! 高考数学常考题型答题技巧与方法 1、解决绝对值问题 主要包括化简、

1.高考文科几天考完

2.文科是哪几科?理科呢?

3.高考数学文科范围

4.高考文科数学试卷和理科数学试卷一样吗?

2017高考数学考试文科,2017年高考数学文科试卷

高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢!

高考数学常考题型答题技巧与方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

函数图像与x轴交点横坐标

不等式解集端点

17、一元二次不等式的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

解集横轴中

18、一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

20、最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

21、穿线法

穿线法是解高次不等式和分式不等式的方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

高考数学常考题型答题技巧与方法有哪些相关 文章 :

1. 2019高考数学选择题万能答题技巧及方法

2. 高中数学常考题型答题技巧与方法及顺口溜

3. 高考数学必考题型以及题型分析

4. 高考数学选择题答题技巧有哪些

5. 2017高考数学常考的题型总结

6. 2017高考常考数学题型归纳

7. 高考数学答题技巧及复习方法

8. 高考数学不同题型的答题技巧

9. 高考数学的核心考点及答题技巧方法

高考文科几天考完

2017年江西成人高考考试科目:

高达专:文科:语文、数学(文)、英语 理科:语文、数学(理)、英语

高达本:文科:语文、数学(文)、英语 文综(历史地理)

理科:语文、数学(理)、英语 理综(物理化学)

专升本:

经管类:政治、英语、高数(二) 教育类:政治、英语、教育理论

文史类:政治、英语、大学语文 法学类:政治、英语、民法

理工类:政治、英语、高数(一) 艺术类:政治、英语、艺术概论

医学类:政治、英语、医学综合 农学类:政治、英语、生态学基础

此外,艺术类、音乐类、美术类需要加试,由各个主考院校组织。

报考时间

2017年8月29日至9月6日

江西成人高考报考材料

1、身份证明:身份证原件及复印件,若身份证遗失,应及时到派出所办理带有本人照片的户籍证明,同时标明身份证号码,并迅速补办身份证,以不耽误考试为主。

2、学历证明:本人最高学历毕业证书原件及相应复印件,按照教育部规定,报考专科起点升本科的考生,须持有国民教育系列专科及其以上文凭。

3、一寸蓝底免冠照片2张

4、工作单位证明:成人高校的某些专业对招生对象会有特殊的要求,如不少省对报考脱产专业的考生,要求考生出具单位同意报考的证明,报考医学专业要求出具对口单位证明等等,因此考生如果选报这些有特殊要求的专业,一定要预先备好相关工作证明书。不在户口所在地报考,也需要出示当地的工作单位证明,或者当地暂住证、居住证。

参考资料:

文科是哪几科?理科呢?

高考是中国教育系统中的一项重要考试,分为文科和理科两个类别,考试时间一般为3天。对于文科考生来说,高考的考试科目包括语文、数学(文科)、外语、政治和历史,考试时间一般为3天,分别为星期六、星期日和星期一。以下是文科高考的考试时间安排和科目介绍。

第一天:语文

高考第一天主要考试科目是语文,考试时间为上午9:00至11:30,共120分钟。语文考试主要包括阅读理解、作文和文学常识等内容,重点考察学生的阅读能力、写作能力和文学素养等方面。

第二天:数学(文科)、外语

高考第二天考试科目为数学(文科)和外语,考试时间为上午9:00至11:30和下午2:30至5:00,共270分钟。数学(文科)考试主要考察学生的数学基础和思维能力,包括代数、几何、函数等内容;外语考试主要考察学生的英语听、说、读、写能力和应用能力。

第三天:政治、历史

高考第三天考试科目为政治和历史,考试时间为上午9:00至11:30和下午2:30至5:00,共270分钟。政治考试主要考察学生的政治思想、政治常识和知识运用能力,包括国家政治制度、政治经济学等内容;历史考试主要考察学生的历史知识和历史思维能力,包括古代史、近现代史等内容。

总体来说,文科高考考试时间为3天,考试科目包括语文、数学(文科)、外语、政治和历史。考生需要提前制定备考计划,合理安排时间和精力,提高自己的考试能力和应对能力。同时,考生还需要注意考试纪律,遵守考场规则,保持良好的心态和稳定的情绪,以确保考试顺利进行。

高考数学文科范围

文科:语文、数学、英语、政治、历史、地理。理科:语文、数学、英语、物理、化学、生物。

人文科学是研究人类文化遗产的,其经典学科是文学、历史学、哲学与艺术、人文地理学;“史”包括历史、考古等;“哲学与艺术学”是讲究方法的,当代的美学、艺术学等皆属“哲学与艺术”范畴。

理科指自然科学、应用科学以及数理逻辑的统称,与文科相对立。理科学科主要有:数学、物理学、化学、生物学、地理学、计算机软件应用、技术与设计实践等。

扩展资料:

理科的诞生与发展是人类智慧发展的结果,标志着人类真正懂得了思考自然,因此理科的发展也是人类科学与自然思维发展的关键。

国内较知名的理科大学有:中国科学技术大学、北京大学、清华大学、南京大学、复旦大学等。

社会科学是研究社会发展、社会问题、社会规律的,是法学、教育学、经济学、管理学4个学科门类的统称,共有19个学科大类(一级学科),120个本科目录内专业(二级学科)。社会科学是人类认识和改造人类社会的科学。研究的对象是人类社会。

百度百科-文科

百度百科-理科

高考文科数学试卷和理科数学试卷一样吗?

文科数学

一、知识要求

知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.

对知识的要求依次是了解、理解、掌握三个层次.

1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用

等.

3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.

二、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.

1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.

抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.

4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.

运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.

5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.

数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.

6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.

7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

三、个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

四、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.

1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.

2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.

3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.

4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.

5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.

数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

Ⅱ.考试范围与要求

本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系

列 1 的内容;选考内容为《课程标准》的选修系列 4 的“坐标系与参数方程”、“不等式选讲”等 2 个专题.

必考内容

(一) 集合

1.集合的含义与表示

(1)了解集合的含义、元素与集合的属于关系.

(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系

(1)理解集合之间包含与相等的含义,能识别给定集合的子集.

(2)在具体情境中,了解全集与空集的含义.

3.集合的基本运算

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

(3)能使用韦恩(Venn)图表达集合的关系及运算.

(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)

1.函数

(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)

表示函数.

(3)了解简单的分段函数,并能简单应用.

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.

(5)会运用函数图像理解和研究函数的性质.

2.指数函数

(1)了解指数函数模型的实际背景.

(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.

(4)知道指数函数是一类重要的函数模型.

高考文科数学试卷和理科数学试卷是不一样的

相对理科数学卷来说,文科数学要简单很多。

文科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4 的“坐标系与参数方程”、“不等式选讲”等2个专题。

理科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的 “坐标系与参数方程”、“不等式选讲”等2个专题。

报了文科,数学也是不能放弃的。物理化学生物可以稍微了解一下。

高考时,除了语文,英语文理科考生是一样考卷,数学和文综(理综)是不一样的。

扩展资料:

每个实行文理分科考试的省份,高考的时候文理数学试卷都是不同的(平时考试文理数学试卷也不同)。

先从考试范围来说,文科数学试卷考察范围没有理科数学试卷的考察范围大。就比如函数导数部分,文科只学基本函数求导,而理科还要学复合函数求导;立体几何部分文科只学空间坐标系,理科还要学空间角证明平行、垂直等位置关系等。

理科数学范围比文科广,试卷难度当然也比文科大。举个例子:文科数学试卷的压轴题理科生能做出来,但是理科数学试卷的压轴题理科生做不出来。

而且文理科数学数学试题的问题也不同,如果考察同一个知识点,文科试题会很直白的问,而理科数学的问题,得通过分析推理才能知道问的什么(夸张好理解,实际情况没有这么夸张的)。

文章标签: # 数学 # 能力 # 问题