您现在的位置是: 首页 > 教育研究 教育研究
高考物理必考公式总结2021_物理高考公式大全
tamoadmin 2024-06-10 人已围观
简介1.高一到高三物理公式!急……2.高考物理公式解析总结3.高考常用的物理公式4.高考物理公式5.高考物理必备公式整理大全高考物理必考知识点公式如下:1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)。2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总。3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im
1.高一到高三物理公式!急……
2.高考物理公式解析总结
3.高考常用的物理公式
4.高考物理公式
5.高考物理必备公式整理大全
高考物理必考知识点公式如下:
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)。
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总。
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2。
4.理想变压器原副线圈中的电压与电流及功率关系。
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出。
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕。
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
高考物理解题技巧如下:
1、充分理解题意:在解题前,需要仔细阅读题目,并明确题目要求和问题所涉及的物理知识点。理解题目可以帮助考生正确解读题目,避免漏看题目细节和误解题目意思。
2、画图辅助理解:在解决一些需要空间想象的题目时,画图可以辅助理解问题,弥补我们对复杂的空间模型或物理问题的认知。画图可以使思路更加清晰,并帮助我们更好地理解物理知识和解题方法。
3、善于利用公式和定律:物理学科是一门公式和定律丰富的学科,考生需要熟练掌握各种公式和定律,并能够灵活运用这些知识点解决问题。建议考生在考前背诵并熟练掌握重要的公式和定律。
4、利用近似处理:在高考物理中,有些问题需要进行快速的近似处理,避免使用过于复杂或精确的方法。熟悉并理解近似处理的方法可以让考生更加轻松和高效地解决问题。
5、每道题要有多种思路:考生要具备多种思路解决同一道题的能力。这也是考高分的关键之一。当一种解法无法得出正确结果时,立即换一种解法,避免耽误太多时间,提高解题效率。
6、对不确定的答案进行推演:在遇到答案不确定的情况下,考生可以借助推演的方式,根据定律和物理规律得出正确答案。例如,对于有些数值型问题,以科学计数法的形式估算答案的量级,这样可以有效帮助考生筛选出正确答案或者发现答案计算有误的情况。
7、利用单位简化计算:高考物理中,单位的分类、转换和计算非常重要。对于一些复杂包含单位的题目,将单位进行简化或单位制进行换算可以大大简化计算,减少失误。
8、拓宽物理实验和观察经验:物理实验和观察是掌握物理知识的重要途径。建议考生多参加物理实验和观察,培养对实际物理现象的理解和认知。通过实验和观察,可以加深对物理概念和原理的理解,从而更好地应用到高考物理题目中。
9、确定问题策略:在高考物理中,策略的选择尤为重要。例如,对于一些需要通过测量来获取物理量的题目,要选择使用合适的测量设备和方便的测量方法。还要注意实验误差的估计和控制。在解决热运动问题时,可以利用统计的思路,应用概率和统计的方法解决问题。
10、提高数字运算技巧:高考物理多是数值计算,加减乘除、化简分式、发掘某些常数特殊的表达式都需要熟练掌握。数量级的转换、小数的运算等都需考生熟练掌握。
物理学科有一定的难度,考生需要通过多种方式和方法提高解题能力。建议考生平时加强物理知识的学习和理解,注重实际应用,多做练习和真题,以提高解题技巧和能力。物理学科给人的感觉是既抽象又实际,并且需要一定的数学基础。只有在平日里打好物理的基础,同时熟悉掌握以上高考物理解题技巧,才能在高考中做到应对自如,取得高分。
高考物理解题注意事项:
1、注意题目类型和考点:不同类型的题目考察的内容和考点可能不同。考生在答题前应先判断题目类型和涉及到的考点,对于重中之重的考点要特别重视。
2、仔细读题、画图和注明符号:解题前必须认真阅读题目,了解题目要求和所涉及的物理知识点。解题时可以结合画图和注明符号,既能帮助理解题目,也能避免因符号不明确或遗漏产生错误。
3、善于利用公式和定律:考生需要熟记并掌握各种公式和定律,遇到问题时要尽可能把问题转化为公式的形式,从而更容易解决问题。
4、更加注重计算过程和单位的掌握:计算过程和单位的掌握对于得出正确结论非常重要,因此在解题时,要重视计算过程的准确性和单位的统一转换。
5、防止粗心大意和反悔现象:高考物理解题就不容许粗心大意。为了避免反悔现象,考生需要在解题前仔细思考,构建行之有效的解题计划和思路,做到耐心认真,避免大意失荆州。
高考物理解题需要考生掌握科学的解题方法和技巧,力争做到准确、快捷、规范。同时,考生还应该注重平时的学习,加强物理知识的积累和巩固,提高解题的能力和水平。在解题的同时,还需要注重学习方法和策略,有利于提高解题效率和准确率,从而在高考中取得好成绩。
高一到高三物理公式!急……
高中物理有很多公式,经过高中三年的学习相信大家都有很多物理知识点需要 总结 ,为了方便大家学习物理,接下来是我为大家整理的高中物理公式大全,希望大家喜欢!
高中物理公式大全一
质点的运动——直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4) 其它 相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中物理公式大全二
直线运动
1)匀变速直线运动
1、速度Vt=Vo+at2.位移s=Vot+at?/2=V平t=Vt/2t
3.有用推论Vt?-Vo?=2as
4.平均速度V平=s/t(定义式)
5.中间时刻速度Vt/2=V平=(Vt+Vo)/2
6.中间位置速度Vs/2=√[(Vo?+Vt?)/2]
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT?{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。
2)自由落体运动
1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中物理公式大全三
冲量与动量相关物理公式
1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相 对子 弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行
高中物理公式大全四
电流计算公式
选取铜蕊大小需查表,设备本身的功率(KW)或者是电流量(A).现给你计算公式如下:
1.220V计算公式
I=P/VP=IV
例如:3000W电热水器220V,A=3000W/220V=13A电流,就用15A电制.
2.380V计算公式(I=A=电流,P=功率=W,V=volt=电压,√3/cos?-1=功率因数=1.73;n=0.8-0.85电机额定效率常数)
I=P/V/(√3/cosq-1)/n
例如:一部110t啤机11000W,380VI=11000/380/1.73/085=20A电流,就用30A电制.
例如:地下生产部整体用电量300KW,380VI=300000/380/1.73/0.85=537A电流,就用600A总制.
变压器容量:100KVA=152A=100000/380/1.73=152A
(380V,25KW)I=p/v/√3/cos¢-1/n=25000/1.73/0.8=47.53A(铜蕊取6mm2)
用电费计算公式:工业用电(高峰:¥1.4元,平常:¥0.86元,低谷:¥0.444元)
以990W为例:W=PT=(990/1000)_小时=0.99_=0.99_0.86元=0.85元/hr
计算所有关于电流,电压,电阻,功率的计算公式!
电流I电压U电阻R功率W
还有个题型大概是说:以知导线截面积,导线长度,用电器功率大小,电压大小,求允许通过的最大电流是多少?该怎么算?
1、串联电路电流和电压有以下几个规律:(如:R1,R2串联)①电流:I=I1=I2(串联电路中各处的电流相等)②电压:U=U1+U2(总电压等于各处电压之和)
③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR
2、并联电路电流和电压有以下几个规律:(如:R1,R2并联)①电流:I=I1+I2(干路电流等于各支路电流之和)②电压:U=U1=U2(干路电压等于各支路电压)
③电阻:总电阻的倒数等于各并联电阻的倒数和。如果n个阻值相同的电阻并联,则有R总=R.注意:并联电路的总电阻比任何一个支路电阻都小。
电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。
3、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。
4、计算电功还可用以下公式:W=I2Rt;W=Pt;W=UQ(Q是电量);
高中物理公式大全相关 文章 :
1. 高中物理公式大全一览表
2. 高中物理公式大全2017
3. 高中物理公式大全
4. 高中物理公式大全:功和能
5. 高中物理公式大全总结
6. 2017年高中物理公式大全
7. 高考必备物理公式
8. 高中物理公式总结归纳
9. 史上最全的高中物理公式
10. 福建高中物理公式汇总
高考物理公式解析总结
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?6?1m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?6?1m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?6?1m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F?0?7{负号表示方向相反,F、F?0?7各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?6?1s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’?0?7也可以是m1v1+m2v2=m1v1?0?7+m2v2?0?7
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1?0?7=(m1-m2)v1/(m1+m2) v2?0?7=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高考常用的物理公式
高中物理与九年义务 教育 物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,下面我给大家整理了关于高考物理公式解析 总结 ,欢迎大家阅读!
交变电流公式总结
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中 性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
电磁振荡和电磁波公式总结
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
磁场公式总结
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
高考 物理 学习 方法
爱因斯坦有个成功的公式:A=X+Y+Z。A代表成功,X代表艰苦劳动,Y代表正确方法,Z代表少说废话。这个公式指明事业成功的三要素。对于学业来说,成功也有三要素:学习成功=心理素质十学习方法十智能素质
(1)学习的动机。学习需要动机。由于学生的个人需要而产生的学习内驱力很重要。有人有旺盛的求知欲,对学习有浓厚的兴趣,正是如此,如升学、就业、兴趣、 爱好 、荣誉、地位、求知欲、事业、前途等都是。我们要努力强化学习的动机,如树立远大理想;参加各种竞赛,挑战强者,激起学习欲望;看到自己学习成果而受鼓励,从而增强自信,经受挫折,要有不甘失败和屈辱的精神。
(2)学习的兴趣。浓厚的学习兴趣与效率有密切关系,可以从好奇心和求知欲中激发学习兴趣。如物理的实验,化学的变化等,容易引起人的好奇和求知;培养对各门功课的兴趣。往往是刻苦学习后,才发现知识的奥秘和用途,才提高学习成绩,所以一定要钻进书海去;把知识应用于实践,激发兴趣,用自己所学的知识分析解决出问题时,那种成功感易激发学习兴趣。
(3)学习的情感、意志和态度。将积极的情感同学习联系起来,防止消极情绪的滋生,可以促进学习。善于控制自己,是学习意志力培养的关键。控制和约束自己的行动,控制不需要的想法和情绪,可以使思想集中到学习上来,这点是尤为重要的。
高考物理公式解析总结相关 文章 :
★ 高考物理公式总结归纳
★ 高中物理公式总结归纳
★ 2020高考物理公式必背大汇总
★ 高考物理公式小知识点
★ 高一物理公式大全总结
★ 高考物理必考知识点及公式总结
★ 高考必备物理公式
★ 高中物理知识点总结与公式归纳
★ 高考物理知识点公式总结电场与磁场
★ 高考物理必备公式大全
高考物理公式
1.胡克定律:F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关)
2.重力:G = mg (g随高度、纬度、地质结构而变化)
3 、求F、的合力的公式:
F=
合力的方向与F1成角:
tg=
注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F1-F2 F F1 +F2
(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。
4、两个平衡条件:
( 1 )共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力
为零。
F=0 或Fx=0 Fy=0
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。
[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力
(一个力)的合力一定等值反向
( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零.
力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)
5、摩擦力的公式:
(1 ) 滑动摩擦力: f= N
说明 : a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b.为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面
积大小、接触面相对运动快慢以及正压力N无关.
(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.
大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)
说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
6、 浮力: F= Vg (注意单位)
7、 万有引力: F=G
(1). 适用条件 (2) .G为万有引力恒量
( 3 )在天体上的应用:(M一天体质量 R一天体半径 g一天体表面重力
加速度)
a 、万有引力=向心力
G
b、在地球表面附近,重力=万有引力
mg = G g = G
c.第一宇宙速度
mg = m V=
8、库仑力:F=K (适用条件)
9.电场力:F=qE (F 与电场强度的方向可以相同,也可以相反)
10、磁场力:
(1)洛仑兹力:磁场对运动电荷的作用力。
公式:f=BqV (BV) 方向一左手定
(2)安培力 : 磁场对电流的作用力。
公式:F= BIL (BI) 方向一左手定则
11、 牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
理解:(1)矢量性 (2)瞬时性 (3)独立性
(4) 同体性 (5)同系性 (6)同单位制
12、匀变速直线运动:
基本规律: Vt = V0 + a t S = vo t +a t2几个重要推论:
(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的即时速度:
Vt/ 2 == ( (3) AB段位移中点的即时速度:
Vs/2 =
匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2
(4)初速为零的匀加速直线运动,在1s 、2s、3s……ns内的位移之比为12:22:32
……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5……
(2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1::
……(
(5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a一匀变速直线运动的加速度 T一每个时间间隔的时间)
13.竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为g的匀减速直线运动。
(1)上升最大高度: H =
(2) 上升的时间: t=
(3) 上升、下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升、下落经过同一段位移的时间相等。
从抛出到落回原位置的时间:t =
(6) 适用全过程的公式: S = Vo t 一g t2 Vt = Vo一g t
Vt2 一Vo2 = 一2 gS ( S、Vt的正、负号的理解)
14、匀速圆周运动公式
线速度: V= R=2f R= 角速度:=
向心加速度:a =2 f2 R
向心力: F= ma = m2 R= mm4mf2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。
(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。
(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。
15 直线运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin y Vo
在Vo、Vy、V、X、y、t、七个物理量中,如果 x ) vo
已知其中任意两个,可根据以上公式求出其它五个物理量。 vy v
18 功 : W = Fs cos (适用于恒力的功的计算)
(1)理解正功、零功、负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
19 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
20 动能定理:外力对物体所做的总功等于物体动能的变化(增量)。
公式: W合= Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 Ep减 = Ek增
22 功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
23 简谐振动: 回复力: F = 一KX 加速度:a = 一
单摆周期公式: T= 2 (与摆球质量、振幅无关)
弹簧振子周期公式:T= 2 (与振子质量有关、与振幅无关)
24、 波长、波速、频率的关系: V= f = (适用于一切波)
三、电磁学
(一)、直流电路
1、电流强度的定义: I = (I=nesv)
2、电阻定律:( 只与导体材料性质和温度有关,与导体横截面积和长度无关)
3、电阻串联、并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R=
4、欧姆定律:(1)、部分电路欧姆定律: U=IR
(2)、闭合电路欧姆定律:I = ε r
路端电压: U = -I r= IR R
输出功率: = Iε-Ir =
电源热功率:
电源效率: = =
(5).电功和电功率: 电功:W=IUt 电热:Q=
电功率 :P=IU
对于纯电阻电路: W=IUt= P=IU =( )
对于非纯电阻电路: W=IUt P=IU
(6)电池组的串联每节电池电动势为`内阻为,n节电池串联时
电动势:ε=n 内阻:r=n
(7)、伏安法测电阻:
(二)电场和磁场
1、库仑定律:,其中,Q1、Q2表示两个点电荷的电量,r表示它们间的距离,k叫做静电力常量,k=9.0×109Nm2/C2。(适用条件:真空中两个静止点电荷)
2、电场强度:
(1)定义是:
F为检验电荷在电场中某点所受电场力,q为检验电荷。单位牛/库伦(N/C),方向,与正电荷所受电场力方向相同。描述电场具有力的性质。
注意:E与q和F均无关,只决定于电场本身的性质。(适用条件:普遍适用)
(2)点电荷场强公式:
k为静电力常量,k=9.0×109Nm2/C2,Q为场源电荷(该电场就是由Q激发的),r为场点到Q距离。(适用条件:真空中静止点电荷)
(3)匀强电场中场强和电势差的关系式:
其中,U为匀强电场中两点间的电势差,d为这两点在平行电场线方向上的距离。
3、电势差:
为电荷q在电场中从A点移到B点电场力所做的功。单位:伏特(V),标量。数值与电势零点的选取无关,与q及均无关,描述电场具有能的性质。
4、电场力的功:
5、电势:
为电荷q在电场中从A点移到参考点电场力所做的功。数值与电势零点的选取有关,但与q及均无关,描述电场具有能的性质。
6、电容:(1)定义式:
C与Q、U无关,描述电容器容纳电荷的本领。单位,法拉(F),1F=106μF=1012pF
(2)决定式:
7、磁感应强度:()
描述磁场的强弱和方向,与F、I、L无关。当I // L时,F=0,但B≠0,方向:垂直于I、L所在的平面。
8、带电粒子在匀强磁场中做匀速圆周运动:
轨迹半径:
运动的周期:
(三)电磁感应和交变电流
1、磁通量:(条件,B⊥S)单位:韦伯(Wb)
2、法拉第电磁感应定律:
导线切割磁感线产生的感应电动势: (条件,B、L、v两两垂直)
3、正弦交流电:(从中性面开始计时)
(1)电动势瞬时值:,其中,最大值
(2)电流瞬时值:,其中,最大值 (条件,纯电阻电路)
(3)电压瞬时值:,其中,最大值,是该段电路的电阻。
(4)有效值和最大值的关系: (只适用于正弦交流电)
4、理想变压器:(注意:U1、U2为线圈两端电压)
(条件,原、副线圈各一个)
5、电磁振荡:周期 ,
高考物理必备公式整理大全
高考物理公式大全
一、振动和波公式
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
5.机械波、横波、纵波
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小
二、冲量与动量公式
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定}
3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
9.由8得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
三、力的合成与分解公式
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、运动和力公式
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、匀速圆周运动公式
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f
6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
六、平抛运动公式
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
七、竖直上抛运动公式
1.位移s=Vot-gt2/2
2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs
4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
八、自由落体运动公式
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
九、匀变速直线运动公式
1.平均速度V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
十、原子和原子核公式
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}。
十一、电磁振荡和电磁波公式
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
十二、交变电流公式
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〕
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
十三、电磁感应公式
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),
ΔI:变化电流, t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
十四、磁场公式
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
十五、恒定电流公式
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
十六、电场公式
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
十七、能量守恒定律公式
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)
十八、气体的性质公式
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
为了帮助考生从知识点的角度进行高考物理复习,使考生能够更为系统的梳理物理知识点,下面是我整理分享的高考物理必备公式大全,欢迎阅读与借鉴,希望对你们有帮助!
高考物理公式(基础版)
匀速直线运动的位移公式:x=vt
匀变速直线运动的速度公式:v=v0+at
匀变速直线运动的位移公式:x=v0t+at2/2
向心加速度的关系:a=ω2r a=v2/r a=4π2r/t2
力对物体做功的计算式:w=fl
牛顿第二定律:f=ma
曲线运动的线速度:v=s/t
曲线运动的角速度:ω=θ/t
线速度和角速度的关系:v=ωr
周期和频率的关系:tf=1
功率的计算式:p=w/t
动能定理:w=mvt2/2-mv02/2
重力势能的计算式:ep=mgh
高考物理公式(常用版)
机械能守恒定律:mgh1+mv12/2=mgh2+mv22/2
库仑定律的数学表达式:f=kqq/r2
电场强度的定义式:e= f/q
电势差的定义式:u=w/q
欧姆定律:i=u/r
电功率的计算:p=ui
焦耳定律:q=i2rt
磁感应强度的定义式:b=f/il
安培力的计算式:f=bil
洛伦兹力的计算式:f=qvb
法拉第电磁感应定律:e=δф/δt
导体切割磁感线产生的感应电动势:e=blv
高考物理必备知识
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度v平=s/t(定义式) 2.有用推论vt2-vo2=2as
2.中间时刻速度vt/2=v平=(vt+vo)/2 4.末速度vt=vo+at
3.中间位置速度vs/2=[(vo2+vt2)/2]1/2 6.位移s=v平t=vot+at2/2=vt/2t
4.加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则af2)
5.互成角度力的合成:
f=(f12+f22+2f1f2cosα)1/2(余弦定理) f1⊥f2时:f=(f12+f22)1/2
6.合力大小范围:|f1-f2|≤f≤|f1+f2|
7.力的正交分fx=fcosβ,fy=fsinβ(β为合力与x轴之间的夹角tgβ=fy/fx)
二、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:f合=ma或a=f合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:f=-f?{负号表示方向相反,f、f?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡f合=0,推广 {正交分解法、三力汇交原理}
5.超重:fn>g,失重:fnr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,a=max,共振的防止和应用〔见第一册p175〕
5.机械波、横波、纵波〔见第二册p2〕
6.波速v=s/t=λf=λ/t{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册p21〕}
三、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:i=ft {i:冲量(n?s),f:恒力(n),t:力的作用时间(s),方向由f决定}
4.动量定理:i=δp或ft=mvt–mvo {δp:动量变化δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?
6.弹性碰撞:δp=0;δek=0 {即系统的动量和动能均守恒}
7.非弹性碰撞δp=0;0
高考物理必备公式整理大全相关 文章 :
★ 2020高考物理公式必背大汇总
★ 高考物理必备公式大全最新
★ 高考物理必备公式大全
★ 2017高三物理常用公式汇总
★ 高三物理公式归纳2017
★ 高考物理必考知识点及公式总结大全
★ 高考物理常考公式梳理
★ 高考物理必考知识点及公式总结
★ 2020高考物理必备公式
★ 高考物理公式解析汇总