您现在的位置是: 首页 > 教育研究 教育研究
2014高考数学模拟试题,2014高考数学答案
tamoadmin 2024-06-08 人已围观
简介1.2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,2.求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程(1)取AC、BD中点为O 连接OE 因为E为直角三角形PAD斜边的中点,所以DE=EP O为BD的中点,所以DO=BO 三角形PBD中,DE:DP
1.2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,
2.求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程
(1)取AC、BD中点为O
连接OE
因为E为直角三角形PAD斜边的中点,所以DE=EP
O为BD的中点,所以DO=BO
三角形PBD中,DE:DP=DO:DB 所以△DEO相似于△DPB EO∥PB
又EO属于平面AEC
所以PB∥平面AEC
(2)过A作AF⊥PB于F点
因为PA⊥平面ABCD,所以PA⊥BC
又因为ABCD为矩形,
所以BC⊥AB
所以BC⊥平面PAB
所以BC⊥AF
又因为AF⊥PB
所以AF⊥平面PBC
P-ABD的体积V=1/3×S×H
=1/3×(1/2×AB×AD)×PA
已知PA AD的长和体积 代入可得
AB=3/2
直角三角形PAB中
1/2XPAXAB=1/2XPBXAF (面积公式)
PB?=PA?+AB? 可求得PB=根号13/2
所以AF=PAXAB/PB=3倍根号13/13
所以A到平面PBC的距离为3倍根号13/13
纯手打 不懂追问 请采纳。
2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,
分析:根据正弦定理和三角形的面积公式,利用不等式的性质 进行证明即可得到结论.
解答:
解:
∵△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+1/2,
∴sin2A+sin2B=-sin2C+1/2,
∴sin2A+sin2B+sin2C=1/2,
∴2sinAcosA+2sin(B+C)cos(B-C)=1/2,2sinA(cos(B-C)-cos(B+C))=1/2,化为2sinA[-2sinBsin(-C)]=1/2,
∴sinAsinBsinC=1/8.
设外接圆的半径为R,由正弦定理可得:a/sinA=b/sinB=c/sinC=2R,由S=1/2absinC,及正弦定理得sinAsinBsinC=(S/2R^2)=1/8,即R^2=4S,
∵面积S满足1≤S≤2,
∴4≤(R^2)≤8,即2≤R≤2√2,
由sinAsinBsinC=1/8可得8≤abc≤16√2,显然选项C,D不一定正确,
A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,
B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16√2,不一定正确,
故选:A
求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程
由第二问,设e^(x/2)=m,可以得到g(x)的导数是:(m-1/m)^2*{2(m+1/m)^2-4b},令g(x)的导数为0,可以得到:1,x=0时,g(x)的导数为0,g(x)为0;2,m1=((2b)^0.5-(2b-4)^0.5)/2,m2=((2b)^0.5+(2b-4)^0.5)/2;如果m1<m<m2时,导数小于0,而m1<1,m2>1,如果换算成x的定义域的话,x1<0,x2>0,所以有函数g(x)在0~x2之间是小于零的。我们要求ln2的值,已知2^0.5的值,所以将x2的值定为特殊值,由e^(x/2)=m2解出x=2lnm2=ln(m2)^2=ln(b-1+(b*b-2b)^0.5);夹逼ln2.将ln2^0.5带入g(x),当b取不同值的时候,可以得到不等式,同时考虑带入2^0.5的值,x=ln2^0.5
这个题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.
由y=f(x)-a|x|得f(x)=a|x|,利用数形结合即可得到结论。
解: 由y=f(x)-a|x|=0得f(x)=a|x|,做出函数y=f(x),y=a|x|的图像,当a≤0时,不满足条件,所以a>0.这是详细的答案已知函数f(x)=|x?+5x+4|,x≤0 ? 2|x-2|,x>0,若函数y=f(x)-a|x|恰有4个零点,则实数a的取值范围
仔细琢磨下答案,这种题基础还是很重要的,掌握好基础知识后,举一反三,分析的时候一种情况一种情况的来,不要搞乱了,希望对你有所帮助,加油~ 有用的话希望给个采纳哦!