您现在的位置是: 首页 > 教育研究 教育研究
江苏高考数学函数,江苏高考函数题
tamoadmin 2024-05-24 人已围观
简介1.江苏高考数学包括哪些内容具体2.江苏高考数学A、B、C级考点都是哪些?3.高考数学必考知识点:对数及对数函数4.2014年江苏高考数学卷第26题怎么做才好?真的很难啊,不愧是压轴题。已知函数f0(x)=sinx/x,(x>0),设fn(5.2023高考数学乙卷考试范围是什么高考数学必考公式如下:1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0时,抛物线开口向上
1.江苏高考数学包括哪些内容具体
2.江苏高考数学A、B、C级考点都是哪些?
3.高考数学必考知识点:对数及对数函数
4.2014年江苏高考数学卷第26题怎么做才好?真的很难啊,不愧是压轴题。已知函数f0(x)=sinx/x,(x>0),设fn(
5.2023高考数学乙卷考试范围是什么
高考数学必考公式如下:
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
5、函数的奇偶性:对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
6、函数的奇偶性:对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
如何使用数学公式模板:
1、可以打印下来,时常复习。直到记住这些公式。也可以不用打印,直接把保存或者收藏。然后时常翻看即可。还可以直接手抄一边。在抄写的过程中,基本上就能够记住这些数学公式。
2、多次记忆。不要指望一次就能够把这些数学公式给记住。只有经过两遍到三遍的记忆,才能够顺利记住以下公式。
3、记忆公式的过程中,学会先浏览再记忆。也就是说,要先学会理解这些公式的含义。理解了具体的含义以后,再来记忆,相对来说,记忆的难度就会小很多。
4、在平时做题的时候,可以对照一下这些公式的具体步骤和类型。看看有没有能够对应得上的题型。以便验证自己的学习效果。
江苏高考数学包括哪些内容具体
高中数学三大难点巨头分别是函数、数列、三角函数。
一、函数:
函数:函数可以说是整个高中数学的关键。在高中数学当中,每一个板块都需要函数的引导。这是高中数学的一根纽带。
在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化。考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答。
几何函数综合:这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义;圆锥、圆柱都是考察的重点。还会有一些表面积、体积的题。另外还有侧面积或者切去某块部分,然后让同学们计算出它的面积。
二、数列:
数列是高中的重点内容,同时也是难点。其实数列在初中的时候就学过一些,只不过学习的内容比较浅,到了高中这个阶段数列就是重要的一个版块,学习深度也会加强。
数列会让学生算出前一个数列的数值都是多少,还会算一些等比数列,等差数列,比较好一点的就是这些不用画图。
其实这一个板块还是比较简单,数列比较难的原因就是公式较为难背,公式问题也就是它最大的难点,只要记住一些死公式,在动动脑子灵活运用,往里边套就能做出来题目。
三、三角函数:
三角函数也是高中数学重点内容,也是比较难的内容。三角函数的考查一般就是在诱导公式,或者证明求解。
另外图像的分析会让学生算出图像平移的变化、对称的变化,再就是一些单调性,单调区间周期性的考察。最后一个对函数的考查就是用实际例题几何的综合,这是一个比较难的部分。
江苏高考数学A、B、C级考点都是哪些?
第1到10题:填空题。
第11题:函数与导数,根据题目意思求函数的极值小值点即为零点,求到a的值即可求函数最大值与最小值.
第12题:根据题目意思设点,利用垂直得到等量关系.即可解决
第14题:方法众多,考查基本不等式.
第14题:等差与等比数列前N项和公式的应用,可用列举法解决.
第15题:立体几何证明平行与垂直,难度不大.
第16题:三角函数的和差公式、二倍角公式的应用.不难,但基础功底要厚实.
第17题:三角函数的实际应用,函数与导数求最值
第18题:圆锥曲线问题:其实是常规题,计算上有一定要求,在平常考试中也就这样的题目了.并不偏.
第19、20题:不盼着都拿满分,好歹这题是有区分度的,满分很难,但得到一定的分数还是比较简单的。
高考数学压轴题难度规律:
1、高考中的压轴题通常第一问和第二小问是第三问的解题关键,所以第一问和第二问也是第三问的基础。第一问与第二问的计算通常会有简便,但是又不会轻易想到的办法。
2、高考中数学的压轴题型基本上是固定的几种,所以这时候有针对的练习是有作用的,而这几种题型的一个基本特点就是灵活,设置灵活,解题灵活,思路灵活。
3、最后一道题目的计算量通常较大,考升往往会在一边想思路,但是又一边计算着繁琐的题目中失去耐心。
高考数学必考知识点:对数及对数函数
数学A、B、C级要求考点有:
C级考点:
1.两角和(差)的正弦、余弦和正切
2.平面向量的数量积
3.等差数列
4.等比数列
5.基本不等式
6.一元二次不等式
7.直线方程
8.圆的标准方程和一般方程
B级考点:
1.交集、并集、补集?
2.函数概念与基本等函数3函数的基本性质?
3.指数与对数
4.指数函数的图象与性质
5.对数函数的图象与性质
6.幂函数
7.函数与方程
8.函数模型及其应用
A级考点:
1.平面向量的应用
2.数列
3.数列的概念
4.线性规划
5.算法的含义
6.流程图
7.基本算法语句
8.常用逻辑用语?
9.命题的四种形式?
10.充分条件、必要条件、充分必要条件
11.简单的逻辑联结词
12.全称量词与存在量词
13.推理与证明
14.合情推理与演绎推理
15.分析法与综合法
16.反证法
17.概率、统计
2014年江苏高考数学卷第26题怎么做才好?真的很难啊,不愧是压轴题。已知函数f0(x)=sinx/x,(x>0),设fn(
高考数学必考知识点:对数定义
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。
注:1.以10为底的对数叫做常用对数,并记为lg。
2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。
3.零没有对数。
4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。
高考数学必考知识点:对数公式
高考数学必考知识点:对数函数定义
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
高考数学必考知识点:对数函数性质
定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)
当a>1,b>1时,y=logab>0;
当0<a<1,b>1时,y=logab<0;
当a>1,0<b<1时,y=logab<0。
2023高考数学乙卷考试范围是什么
本题考查了三角函数,复合函数的求导数公式和法则,诱导公式,以及数学归纳法证明命题,转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题,分析问题,解决问题的能力,以及逻辑思维能力.答案看哈哈都没其他人给你答,还好我来了,采纳哦
已知函数f0(x)=sinx/x,(x>0),设fn(x)为fn-1(x)的导数,n属于N *,
(1)求2f1(π/2)+(π/2)f2(π/2)的值;
(2)证明:对任意 n属于N*,等式|nfn-1(π/4)+(π/4)fn(π/4)|=根号2/2(二分之根号2)都成立。
关于2023高考数学乙卷考试范围是什么如下:
以下是根据历年高考数学乙卷的考试范围,进一步详细列出的主要知识点和题型:
一、函数与方程
1、一次函数和二次函数:函数的性质、图像、方程与不等式、函数关系等。
2、指数函数和对数函数:函数的性质、图像、方程与不等式、函数关系等。
3、三角函数:正弦函数、余弦函数、正切函数的性质、图像、方程与不等式、函数关系等。
4、复合函数和反函数:复合函数的性质与求导、反函数的性质与图像等。
5、立体几何中的函数:立方体、棱柱、棱锥等几何体的表面积、体积与函数关系。
二、数列与数学归纳法
1、通项公式与求和公式:等差数列和等比数列的通项公式与求和公式,以及在数列中的应用。
2、数学归纳法:数学归纳法的原理、基本步骤、证明思路等。
三、三角函数与解三角形
1、三角函数的性质与应用:三角函数的周期性、奇偶性、单调性等特征,以及解三角方程和证明三角恒等式等。
2、三角形的解析几何与面积计算:使用向量、坐标和解析几何方法解决三角形的相关问题。
四、平面向量与解析几何
1、向量的概念与性质:向量的定义、加减乘法、模、方向角等。
2、向量的共线与垂直:向量的共线判定、垂直判定、向量的投影等。
3、解析几何的基本概念与方程:点、直线、曲线的方程与性质,以及平面上点与直线之间的位置关系等。
五、概率与统计
1、随机事件与概率计算:随机事件的基本概念、概率计算、频率与概率的关系等。
2、统计图表解读与数据分析:直方图、折线图、饼图等统计图表的解读,以及频数、频率、平均数、中位数等数据的计算与分析。
六、导数与微分应用
1、导数的定义、计算、性质:函数的导数与导数的运算法则,包括常见函数的导数计算。
2、导数在函数图像、极值和曲线分析中的应用。
3、微分的概念与微分中值定理。
七、积分与定积分的应用
1、定积分的定义、计算、性质:定积分的性质、基本公式,以及常见函数的定积分计算。
2、定积分在几何图像、面积、体积和平均值计算中的应用。
以上列举的知识点和题型仅供参考,实际考试范围可能会因地区和年份而有所不同。因此,建议你参考当地教育部门或相关考试机构提供的官方文件和指南,以获取确切和最新的考试范围信息。祝你考试顺利!