您现在的位置是: 首页 > 分数线 分数线
2017高考数学选择_高考数学2017试卷
tamoadmin 2024-07-08 人已围观
简介1.2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说。2.2017年浙江高考数学试卷19题怎么解3.北京高考数学考试范围,与全国卷的区别4.17高考哪里数学卷最难5.2017年高考数学平面向量必考知识点全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆全国Ⅲ卷地区:云南、广西、贵州、四川海南
1.2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说。
2.2017年浙江高考数学试卷19题怎么解
3.北京高考数学考试范围,与全国卷的区别
4.17高考哪里数学卷最难
5.2017年高考数学平面向量必考知识点
全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆
全国Ⅲ卷地区:云南、广西、贵州、四川
海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)
山东省:全国Ⅰ卷(外语、文综、理综)+自主命题(语文、文数、理数)
江苏省:全部科目自主命题
北京市:全部科目自主命题
天津市:全部科目自主命题
2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。
体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。
高考数学必考知识点归纳如下
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
2017年浙江高考数学试卷19题怎么解
LZ您好
全国卷2本来就不是难卷,且2017年的全国卷2的难度"歪了"
歪的地方是题目不算新,计算量挺大(第18题概率论与数理统计的大题,并且位置靠前,后面大题不难但是做完这题心态容易崩)
所以有一定计算量训练的学生这张卷应该很轻松
基础选择填空完全在比简单题用时...
可能拉分的题:
选择题最后一题建立坐标系进行向量计算,立刻天就蓝了...结果还是考计算量!
填空倒数第二题是裂项
填空最后一题画完图结果还是变成计算题...
三角大题是基础.
圆锥曲线和立体几何大题也是思路送分,看你认不认真计算.
压轴导数题算不得难但是(1)须有极限思想;(2)是分类讨论,存在唯一极大值点被你证明好了这题也结束了.
坐标系与参数方程选修题有积化和差的技巧...不等式的那个选修题也是套路,但是是证明题,所以难度比坐标系题要难...
所以这张卷子,真心难度不大,问做题认真不认真,计算量稍微偏大而已.
北京高考数学考试范围,与全国卷的区别
2017年浙江省高考数学试卷,延续了浙江省多年的数学命题特色,简约中显大气,朴实中有灵气。
试题情景熟悉,充分考查了学生的数学素养、思维品质与学习潜能,体现出较强的区分度和选拔功能。
今年的数学高考试卷,是浙江省自主命题以来出得好的试卷之一。试题立足基础知识、基本技能,一路下来行云流水,拾阶而上。试题体现了很好的区分度,基本上会让考生有多少水平就能拿多少分。
试卷注重对能力的考查,强调数学思维与本质,要求深刻理解概念,并能合理转化、灵活运用。如选择题第9、10题,填空题第17题,解答题第20、21、22题,设问层次递进,这样的设计,对不同的基础、不同的能力水平的学生都提供了适当的思考空间,体现了较好的区分度,凸显了试卷的选拔功能。但想顺利解决,需要学生具有较强的思维能力和解题能力。
17高考哪里数学卷最难
北京高考 范围 是 必修1 必修2 必修3 必修4 必修5 选修2-1 选修2-2 选修2-3 新修4-1(2017已经删去了)选修4-4
2017年北京数学高考科目增加了数学文化的内容,删去“几何证明选讲”选考模块,以顺应课程标准修订的趋势。
全国卷 考的是 必修1 必修2 必修3 必修4 必修5 选修2-1 选修2-2 选修2-3
其中考生在 选修4-1 选修4-2 选修4-4 选修4-5中 任选一题作答
2017年高考数学平面向量必考知识点
top 1
浙江卷
点评
今年的浙江的数学试题选择题难度不大,填空题继续采用多空设问的形式,在其中穿插数学文化知识等考点,紧扣考纲,其中17题考查函数与绝对值问题,有一定难度。22题还是以数列作为压轴题,分布设问,让不同程度的学生都能拿分,有较好的区分度。与去年相比,题型变化不大,还是要注重通法通性的训练。
top 2
江苏卷
点评
今年的江苏的数学试题仍秉承“原创为主,试题紧扣教材,学生做起来有一种亲近感,具有“上手容易”的特点,有利于考生发挥真实的水平。部分题目综合性稍大了一些,注重对数学思想方法的考查,但解决问题的思路和方法还是常见的。
top 3
上海卷
点评
上海卷今年数学试卷不分文理,考查学生数学素养及应用能力成为试卷的亮点,体现“教考一致”的导向作用。上海卷压轴题目较难,解析几何题目计算量很大,增加了学生得分难度;21题函数大题考察函数性质与充要条件,难度依然较大,要求要求思维能力。
top 4
全国Ⅱ卷
使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆、海南
点评:
今年考试的出题风格与之前几年相比变化不大,既注重考查学生对基础知识的掌握程度,也加入了一些创新的元素,以此来检验学生能否灵活运用公式定理来解决实际问题。试卷中一些题目题干的叙述方式比较新颖,这也突出体现了考纲中对于“数学文化”的考查要求。
top 5
全国Ⅰ卷
使用省份:福建、河南、河北、山西、江西、湖北、湖南、广东、安徽
点评:
2017年全国Ⅰ卷从总体上来看具有如下几个特点:选择题题目难度明显降低,解答题的灵活性较强、创新程度比较高,整张试卷计算量较大。这种题目风格也比较符合全国卷一贯的特点——既重视对基础知识的考查又会加入一些创新元素。同时,提高对考生计算能力的要求是近年来全国卷较为明显的趋势。
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。
高考数学必考知识点平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。
(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。
(3)单位向量:模为1个单位长度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:长度相等且方向相同的向量
高考数学必考知识点平面向量数量积解析
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2
2、平面向量数量积具有以下性质:
1、a?a=|a|2?0
2、a?b=b?a
3、k(a?b)=(ka)b=a(kb)
4、a?(b+c)=a?b+a?c
5、a?b=0<=>a?b
6、a=kb<=>a//b
7、e1?e2=|e1||e2|cos?
高考数学必考知识点平面向量加法解析
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
注:向量的加法满足所有的加法运算定律,如:交换律、结合律。
高考数学必考知识点平面向量减法解析
1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式汇总
1、定比分点
定比分点公式(向量P1P=?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+?OP2)(1+?);(定比分点向量公式)
x=(x1+?x2)/(1+?),
y=(y1+?y2)/(1+?)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
2、三点共线定理
若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a?b的充要条件是 a?b=0。
a?b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
3、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即?共同起点,指向被减?
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
5、数乘向量
实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。
当?>0时,?a与a同方向;
当?<0时,?a与a反方向;
当?=0时,?a=0,方向任意。
当a=0时,对于任意实数?,都有?a=0。
注:按定义知,如果?a=0,那么?=0或a=0。
实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;
当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。
数与向量的乘法满足下面的运算律
结合律:(?a)?b=?(a?b)=(a?b)。
向量对于数的分配律(第一分配律):(?+?)a=?a+?a.
数对于向量的分配律(第二分配律):?(a+b)=?a+?b.
数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。
6、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(?a)?b=?(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a?b 〈=〉a?b=0。
|a?b|?|a|?|b|。
7、向量的数量积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。
(2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。
(3)|a?b|?|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。
(1)向量的向量积性质:
∣a?b∣是以a和b为边的平行四边形面积。
a?a=0。
a‖b〈=〉a?b=0。
(2)向量的向量积运算律
a?b=-b?a;
(?a)?b=?(a?b)=a?(?b);
(a+b)?c=a?c+b?c.
注:向量没有除法,?向量AB/向量CD?是没有意义的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;