您现在的位置是: 首页 > 分数线 分数线
高考数学试卷2017年_2017数学高考丙答案
tamoadmin 2024-06-05 人已围观
简介1.2017年西藏高考数学基础练习(六)2.求关于数学“排列与组合”的专题,顺便把答案也附上。Thank You!3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。参考答案为-16,18.只取第一象限点了2017年西藏高考数学基础练习(六)an-n=2(a(n-1)-n-1)这个不难,知道an是等
1.2017年西藏高考数学基础练习(六)
2.求关于数学“排列与组合”的专题,顺便把答案也附上。Thank You!
3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。
参考答案为-16,18.只取第一象限点了
2017年西藏高考数学基础练习(六)
an-n=2(a(n-1)-n-1)这个不难,知道an是等比和n之和
第二问看成等比/等比+n/等比。等比/等比还是等比,所以这个和好求。
另一个是裂项求和的标准格式,
比如n/2^n.
1/2^1+2/2^2...........(1)
把上面*q,得到
1/2^2+2/2^3....(2)
就是相当于(2)的第一项和(1)的第二项只差一个1,用(1)-q*(2),而头尾那两项是没法一起算的,要单算。
求关于数学“排列与组合”的专题,顺便把答案也附上。Thank You!
一、选择题
1.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为( )
A.3x-y-20=0 B.3x-y+10=0
C.3x-y-9=0 D.3x-y-12=0
答案:A 解题思路:设AC的中点为O,即.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0,得3x-y-20=0.
2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )
A.1 B.2
C. -2D.3
答案:C 解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d==2,所以切线长的最小值是l==.
3.直线y=x+b与曲线x=有且只有一个交点,则b的取值范围是( )
A.{b||b|=}
B.{b|-1
C.{b|-1≤b<1}
D.非以上答案
答案:
B 解题思路:在同一坐标系中,画出y=x+b与曲线x=(就是x2+y2=1,x≥0)的图象,如图所示,相切时b=-,其他位置符合条件时需-1
4.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( )
A.2 B.3
C.4 D.6
答案:C 解题思路:圆的标准方程为(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为.因为圆关于直线2ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为
d==
==.
所以当a=2时,d有最小值=3,此时切线长最小,为==4,故选C.
5.已知动点P到两定点A,B的距离和为8,且|AB|=4,线段AB的中点为O,过点O的所有直线与点P的轨迹相交而形成的线段中,长度为整数的有( )
A.5条 B.6条
C.7条 D.8条
答案:D 命题立意:本题考查椭圆的定义与性质,难度中等.
解题思路:依题意,动点P的轨迹是以A,B为焦点,长轴长是8,短轴长是2=4的椭圆.注意到经过该椭圆的中心O的最短弦长等于4,最长弦长是8,因此过点O的所有直线与点P的轨迹相交而形成的线段中,长度可以为整数4,5,6,7,8,其中长度为4,8的各一条,长度为5,6,7的各有两条,因此满足题意的弦共有8条,故选D.
6.设m,nR,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( )
A.[1-,1+]
B.(-∞,1-][1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2][2+2,+∞)
答案:D 解题思路: 直线与圆相切,
=1,
|m+n|=,
即mn=m+n+1,
设m+n=t,则mn≤2=,
t+1≤, t2-4t-4≥0,
解得:t≤2-2或t≥2+2.
7.在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得=λ+μ,则λ2+(μ-3)2的取值范围是( )
A.[0,+∞) B.(2,+∞)
C.(2,8) D.(8,+∞)
答案:B 解题思路:依题意B,O,C三点不可能在同一直线上, ·=|cos BOC=cos BOC∈(-1,1),又由=λ+μ,得λ=-μ,于是λ2=1+μ2-2μ·,记f(μ)=λ2+(μ-3)2.则f(μ)=1+μ2-2μ·+(μ-3)2=2μ2-6μ-2μ·+10,可知f(μ)>2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)<2μ2-4μ+10=2(μ-1)2+8无值,故λ2+(μ-3)2的取值范围为(2,+∞).
8.已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在一点Q,使得OPQ=30°,则x0的取值范围是( )
A.[-1,1] B.[0,1]
C.[-2,2] D.[0,2]
答案:D 解析:由题知,在OPQ中,=,即=, |OP|≤2,又P(x0,x0-2),则x+(x0-2)2≤4,解得x0[0,2],故选D.
9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分成两部分,使得这两部分的面积之差,则该直线的方程为( )
A.x+y-2=0 B.y-1=0
C.x-y=0 D.x+3y-4=0
答案:A 命题立意:本题考查直线、线性规划与圆的综合运用及数形结合思想,难度中等.
解题思路:要使直线将圆形区域分成两部分的面积之差,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直.又已知点P(1,1),则kOP=1,故所求直线的斜率为-1.又所求直线过点P(1,1),故由点斜式得,所求直线的方程为y-1=-(x-1),即x+y-2=0.
10.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是( )
A. B.
C.[-, ] D.
答案:B 命题立意:本题考查直线与圆的位置关系,难度中等.
解题思路:在由弦心距d、半径r和半弦长|MN|构成的直角三角形中,由勾股定理,得|MN|=≥,得4-d2≥3,解得d2≤1,又d==,解得k2≤,所以-≤k≤.
二、填空题
11.已知直线l:y=-(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则MOA的面积等于________.
答案: 命题立意:本题考查直线与圆的位置关系的应用,难度较小.
解题思路:联立直线与圆的方程可得xM=,故SMOA=×|OA|×xM=××=.
12.在ABC中,角A,B,C的对边分别为a,b,c.若a2+b2=c2,则直线ax-by+c=0被圆x2+y2=9所截得的弦长为________.
答案:2 命题立意:本题考查直线与圆位置关系的应用,求解弦长一般采用几何法求解,难度较小.
解题思路:圆心到直线的距离d===,故直线被圆截得的弦长为2=2=2.
13.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,其中O为原点,则点P的轨迹方程是________.
答案:(x-2)2+y2=4(y≠0) 命题立意:本题考查角平分线的性质及直接法求轨迹方程,难度中等.
解题思路:因为A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,故点P在角APB的角平分线上,则利用PAPB=AOOB=21,设点P(x,y),则利用关系式可知=2化简可得(x-2)2+y2=4(y≠0).
14.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,则m的倾斜角可以是
15° 30° 45° 60° 75°
其中正确答案的序号是________.(写出所有正确答案的序号)
答案: 解题思路:设直线m与l1,l2分别交于A,B两点,
过A作ACl2于C,则|AC|==.
又|AB|=2,ABC=30°.
又直线l1的倾斜角为45°,
直线m的倾斜角为45°+30°=75°或45°-30°=15°.
B组
一、选择题
1.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos AFB=( )
A. B.
C.- D.-
答案:D 解题思路:联立消去y得x2-5x+4=0,解得x=1或x=4.
不妨设点A在x轴下方,所以A(1,-2),B(4,4).
因为F(1,0),所以=(0,-2),=(3,4).
因此cos AFB=
==-.故选D.
2.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为( )
A. B.
C.1 D.2
答案:D 解题思路:由题意知,抛物线的准线l为y=-1,过A作AA1l于A1,过B作BB1l于B1,设弦AB的中点为M,过M作MM1l于M1,则|MM1|=,|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,即|AA1|+|BB1|≥6,即2|MM1|≥6, |MM1|≥3,即M到x轴的距离d≥2,故选D.
3.设双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,A是双曲线渐近线上的一点,AF2F1F2,原点O到直线AF1的距离为|OF1|,则渐近线的斜率为( )
A.或- B.或-
C.1或-1 D.或-
答案:D 命题立意:本题考查了双曲线的几何性质的探究,体现了解析几何的数学思想方法的巧妙应用,难度中等.
解题思路:如图如示,不妨设点A是第一象限内双曲线渐近线y=x上的一点,由AF2F1F2,可得点A的坐标为,又由OBAF1且|OB|=|OF1|,即得sin OF1B=,则tan OF1B=,即可得=, =,得=,由此可得该双曲线渐近线的斜率为或-,故应选D.
4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的F2交椭圆于点E,E恰好是直线EF1与F2的切点,则椭圆的离心率为( )
A. B.
C. D.
答案:C 解题思路:由题意可得,EF1F2为直角三角形,且F1EF2=90°,
|F1F2|=2c,|EF2|=b,
由椭圆的定义知|EF1|=2a-b,
又|EF1|2+|EF2|2=|F1F2|2,
即(2a-b)2+b2=(2c)2,整理得b=a,
所以e2===,故e=,故选C.
5.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2 C.4 D.8
答案:C 解题思路:由题意得,设等轴双曲线的方程为-=1,又抛物线y2=16x的准线方程为x=-4,代入双曲线的方程得y2=16-a2y=±,所以2=4,解得a=2,所以双曲线的实轴长为2a=4,故选C.
6.抛物线y2=-12x的准线与双曲线-=1的两条渐近线围成的三角形的面积等于( )
A. B.3 C. D.3
答案:B 命题立意:本题主要考查抛物线与双曲线的性质等基础知识,意在考查考生的运算能力.
解题思路:依题意得,抛物线y2=-12x的准线方程是x=3,双曲线-=1的渐近线方程是y=±x,直线x=3与直线y=±x的交点坐标是(3,±),因此所求的三角形的面积等于×2×3=3,故选B.
7.若双曲线-=1与椭圆+=1(m>b>0)的离心率之积大于1,则以a,b,m为边长的三角形一定是( )
A.等腰三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
答案:D 解题思路:双曲线的离心率为e1=,椭圆的离心率e2=,由题意可知e1·e2>1,即b2(m2-a2-b2)>0,所以m2-a2-b2>0,即m2>a2+b2,由余弦定理可知三角形为钝角三角形,故选D.
8. F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若ABF2是等边三角形,则该双曲线的离心率为( )
A.2 B. C. D.
答案:B 命题立意:本题主要考查了双曲线的定义、标准方程、几何性质以及基本量的计算等基础知识,考查了考生的推理论证能力以及运算求解能力.
解题思路:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为ABF2是正三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且F1AF2=120°,在F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=,故选B.
9.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2 B.3
C. D.
答案:A 解题思路:设抛物线y2=4x上一动点P到直线l1和直线l2的距离分别为d1,d2,根据抛物线的定义可知直线l2:x=-1恰为抛物线的准线,抛物线的焦点为F(1,0),则d2=|PF|,由数形结合可知d1+d2=d1+|PF|取得最小值时,即为点F到l1的距离,利用点到直线的距离公式得最小值为=2,故选A.
10.已知双曲线-=1(a>0,b>0),A,B是双曲线的两个顶点,P是双曲线上的一点,且与点B在双曲线的同一支上,P关于y轴的对称点是Q.若直线AP,BQ的斜率分别是k1,k2,且k1·k2=-,则双曲线的离心率是( )
A. B. C. D.
答案:C 命题立意:本题考查双曲线方程及其离心率的求解,考查化简及变形能力,难度中等.
解题思路:设A(0,-a),B(0,a),P(x1,y1),Q(-x1,y1),故k1k2=×=,由于点P在双曲线上,故有-=1,即x=b2=,故k1k2==-=-,故有e===,故选C.
二、填空题
11.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点,则(1)y1y2=________;(2)三角形ABF面积的最小值是________.
答案:(1)-8 (2)2 命题立意:本题主要考查直线与抛物线的位置关系,难度中等.
解题思路:设直线AB的方程为x-2=m(y-0),即x=my+2,联立得y2-4my-8=0.(1)由根与系数的关系知y1y2=-8.(2)三角形ABF的面积为S=|FP||y1-y2|=×1×=≥2.
知识拓展:将ABF分割后进行求解,能有效减少计算量.
12. B1,B2是椭圆短轴的两端点,O为椭圆中心,过左焦点F1作长轴的垂线交椭圆于P,若|F1B2|是|OF1|和|B1B2|的等比中项,则的值是________.
答案: 命题立意:本题考查椭圆的基本性质及等比中项的性质,难度中等.
解题思路:设椭圆方程为+=1(a>b>0),令x=-c,得y2=, |PF1|=. ==,又由|F1B2|2=|OF1|·|B1B2|,得a2=2bc. a4=4b2(a2-b2), (a2-2b2)2=0, a2=2b2, =.
13.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________.
答案:2 解题思路:过B作BE垂直于准线l于E,
=, M为AB的中点,
|BM|=|AB|,又斜率为,
BAE=30°, |BE|=|AB|,
|BM|=|BE|, M为抛物线的焦点,
p=2.
14.
如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为________.
答案: 解题思路:设椭圆的方程为+=1(a>b>0),B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)0, e>或e<,又0
15.在平面直角坐标系xOy中,已知双曲线C:-=1.设过点M(0,1)的直线l与双曲线C交于A,B两点,若=2,则直线l的斜率为________.
答案:± 命题立意:本题考查直线与双曲线的位置关系,难度中等.
解题思路:联立直线与双曲线,结合根与系数的关系及向量的坐标运算求解.由题意可知,直线l与双曲线的两支相交,故设直线l:y=kx+1,k,代入双曲线方程整理得(3-4k2)x2-8kx-16=0(*).设A(x1,y1),B(x2,y2),则由=2得x1=-2x2,在(*)中,利用根与系数的关系得x1+x2=,解得x2=-,y2=,代入双曲线方程整理得16k4-16k2+3=0,解得k2=,故直线l的斜率是±.
例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。
解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。
(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。
(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:
3×5+3×6+5×6=63(种)。
例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射?
分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。”
因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=53(种)。
2.排列数与组合数的两个公式
排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。
连乘积的形式 阶乘形式
∴ 等式成立。
评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形过程得以简化。
例4.解方程
解:原方程可化为:
解得x=3。
评述:解由排列数与组合数形式给出的方程时,在脱掉排列数与组合数的符号时,要注意把排列数与组合数定义中的取出元素与被取元素之间的关系以及它们都属自然数的这重要限定写在脱掉符号之前。
3.排列与组合的应用题
历届高考数学试题中,排列与组合部分的试题主要是应用问题。一般都附有某些限制条件;或是限定元素的选择,或是限定元素的位置,这些应用问题的内容和情景是多种多样的,而解决它们的方法还是有规律可循的。常用的方法有:一般方法和特殊方法两种。
一般方法有:直接法和间接法。
(1)在直接法中又分为两类,若问题可分为互斥各类,据加法原理,可用分类法;若问题考虑先后次序,据乘法原理,可用占位法。
(2)间接法一般用于当问题的反面简单明了,据的原理,采用排除的方法来获得问题的解决。
特殊方法:
(1)特元特位:优先考虑有特殊要求的元素或位置后,再去考虑其它元素或位置。
(2)捆绑法:某些元素必须在一起的排列,用“捆绑法”,紧密结合粘成小组,组内外分别排列。
(3)插空法:某些元素必须不在一起的分离排列用“插空法”,不需分离的站好实位,在空位上进行排列。
(4)其它方法。
例5.7人排成一行,分别求出符合下列要求的不同排法的种数。
(1)甲排中间; (2)甲不排两端;(3)甲,乙相邻;
(4)甲在乙的左边(不要求相邻); (5)甲,乙,丙连排;
(6)甲,乙,丙两两不相邻。
解:(1)甲排中间属“特元特位”,优先安置,只有一种站法,其余6人任意排列,故共有:1×=720种不同排法。
(2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有种,故共有·=3600种不同排法。
(3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有·=1400种不同的排法。
(4)甲在乙的左边。考虑在7人排成一行形成的所有排列中:“甲在乙左边”与“甲在乙右边”的排法是一一对应的,在不要求相邻时,各占所有排列的一半,故甲在乙的左边的不同排法共有=2520种。
(5)甲、乙、丙连排,亦属于某些元素必须在一起的排列,利用“捆绑法”,先将甲、乙、丙合为一个“元素”,连同其余4人共5个“元素”任意排列,现由甲、乙、丙交换位置,故共有=720种不同排法。
(6)甲、乙、丙两两不相邻,属于某些元素必须不在一起的分离排列,用“插空法”,先将甲、乙、丙外的4人排成一行,形成左、右及每两人之间的五个“空”。再将甲、乙、丙插入其中的三个“空”,故共有
=1440种不同的排法。
例6.用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:
(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。
解:(1)奇数:要得到一个5位数的奇数,分成3步,第一步考虑个位必须是奇数,从1,3,5中选出一个数排列个位的位置上有种;第二步考虑首位不能是0,从余下的不是0的4个数字中任选一个排在首位上有种;
第三步:从余下的4个数字中任选3个排在中间的3个数的位置上,由乘法原理共有=388(个)。
(2)5的倍数:按0作不作个位来分类
第一类:0作个位,则有=120。
第二类:0不作个位即5作个位,则=96。
则共有这样的数为:=216(个)。
(3)比20300大的数的五位数可分为三类:
第一类:3xxxx, 4xxxx, 5xxxx有3个;
第二类:21xxx, 23xxx, 24xxx, 25xxx, 的个;
第三类:203xx, 204xx, 205xx, 有个,
因此,比20300大的五位数共有:=474(个)。
(4)不含数字0且1,2不相邻的数:分两步完成,第一步将3,4,5三个数字排成一行;第二步将1和2插入四个“空”中的两个位置,故共有=72个不含数字0,且1和2不相邻的五位数。
例7.直线与圆相离,直线上六点A1,A2,A3,A4,A5,A6,圆上四点B1,B2,B3,B4,任两点连成直线,问所得直线最多几条?最少几条?
解:所得直线最多时,即为任意三点都不共线可分为三类:
第一类为已知直线上与圆上各取一点连线的直线条数为=24;
第二类为圆上任取两点所得的直线条数为=6;
第三类为已知直线为1条,则直线最多的条数为N1=++1=31(条)。
所得直线最少时,即重合的直线最多,用排除法减去重合的字数较为方便,而重合的直线即是由圆上取两点连成的直线,排除重复,便是直线最少条数:N2=N1-2=31-12=19(条)。
高二数学排列与组合练习题
黎岗
排列练习
1、将3个不同的小球放入4个盒子中,则不同放法种数有( )
A、81 B、64 C、12 D、14
2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()
A、 B、 C、 D、
3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数()
A、64 B、60 C、24 D、256
4、3张不同的**票全部分给10个人,每人至多一张,则有不同分法的种数是()
A、2160 B、120 C、240 D、720
5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且
合唱节目不能相邻,则不同排法的种数是()
A、 B、 C、 D、
6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()
A、 B、 C、 D、
7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有()
A、24 B、36 C、46 D、60
8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,
其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()
A、 B、
C、 D、
答案:
1-8 BBADCCBA
一、填空题
1、(1)(4P84+2P85)÷(P86-P95)×0!=___________
(2)若P2n3=10Pn3,则n=___________
2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为
__________________________________________________________________
3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法。
4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成
_________种不同币值。
二、解答题
5、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,
(1)在下列情况,各有多少个?
①奇数
②能被5整除
③能被15整除
④比35142小
⑤比50000小且不是5的倍数
6、若把这些五位数按从小到大排列,第100个数是什么?
1 × × × ×
1 0 × × ×
1 2 × × ×
1 3 × × ×
1 4 × × ×
1 5 0 2 ×
1 5 0 3 2
1 5 0 3 4
7、7个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头
(2)甲不排头,也不排尾
(3)甲、乙、丙三人必须在一起
(4)甲、乙之间有且只有两人
(5)甲、乙、丙三人两两不相邻
(6)甲在乙的左边(不一定相邻)
(7)甲、乙、丙三人按从高到矮,自左向右的顺序
(8)甲不排头,乙不排当中
8、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数
(1)这样的三位数一共有多少个?
(2)所有这些三位数的个位上的数字之和是多少?
(3)所有这些三位数的和是多少?
答案:
一、
1、(1)5
(2)8
二、
2、abc,abd,acd,bac,bad,bcd,cab,cad,cbd,dab,dac,dbc
3、8640
4、39
5、
①3× =288
②
③
④
⑤
6、
=120 〉100
=24
=24
=24
=24
=2
7、(1) =720
(2)5 =3600
(3) =720
(4) =960
(5) =1440
(6) =2520
(7) =840
(8)
8、(1)
(2)
(3)300×(100+10+1)=33300
排列与组合练习
1、若 ,则n的值为( )
A、6 B、7 C、8 D、9
2、某班有30名男生,20名女生,现要从中选出5人组成一个宣传小组,其中男、女学
生均不少于2人的选法为( )
A、 B、
C、 D、
3、空间有10个点,其中5点在同一平面上,其余没有4点共面,则10个点可以确定不
同平面的个数是( )
A、206 B、205 C、111 D、110
4、6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是( )
A、 B、 C、 D、
5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是( )
A、21 B、25 C、32 D、42
6、设P1、P2…,P20是方程z20=1的20个复根在复平面上所对应的点,以这些点为顶
点的直角三角形的个数为( )
A、360 B、180 C、90 D、45
7、若 ,则k的取值范围是( )
A、[5,11] B、[4,11] C、[4,12] D、4,15]
8、口袋里有4个不同的红球,6个不同的白球,每次取出4个球,取出一个线球记2
分,取出一个白球记1分,则使总分不小于5分的取球方法种数是( )
A、 B、
C、 D、
答案:
1、B 2、D 3、C 4、A 5、A 6、B
7、B 8、C
1、计算:(1) =_______
(2) =_______
2、把7个相同的小球放到10个不同的盒子中,每个盒子中放球不超1个,则有_______
种不同放法。
3、在∠AOB的边OA上有5个点,边OB上有6个点,加上O点共12个点,以这12个点为顶
点的三角形有_______个。
4、以1,2,3,…,9这几个数中任取4个数,使它们的和为奇数,则共有_______种
不同取法。
5、已知
6、(1)以正方体的顶点为顶点的三棱锥有多少个?
(2)以正方体的顶点为顶点的四棱锥有多少个?
(3)以正方体的顶点为顶点的棱锥有多少个?
7、集合A中有7个元素,集合B中有10个元素,集合A∩B中有4个元素,集合C满足
(1)C有3个元素;(2)C A∪B;(3)C∩B≠φ,C∩A≠φ,求这样的集合C的个
数。
8、在1,2,3,……30个数中,每次取两两不等的三个数,使它们的和为3的倍数,
共有多少种不同的取法?
答案:
1、490
2、31
3、165
4、60
5、解:
6、解:(1)
(2)
(3)58+48=106
7、解:A∪B中有元素 7+10-4=13
8、解:把这30个数按除以3后的余数分为三类:
A={3,6,9,…,30}
B={1,4,7,…,28}
C={2,5,8,…,29}
(个)