您现在的位置是: 首页 > 分数线 分数线

高考数学公式及知识点,高考数学公式知识点大全百度云网盘

tamoadmin 2024-05-15 人已围观

简介1.高三年级数学知识点归纳笔记 篇一 1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件  2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用  3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和  4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数

高考数学公式及知识点,高考数学公式知识点大全百度云网盘

1.高三年级数学知识点归纳笔记 篇一

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

 2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

 3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

 4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

 5.平面向量:初等运算、坐标运算、数量积及其应用

 6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

 7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

 8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

 9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

 10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

 11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

 12.导数:导数的概念、求导、导数的应用

 13.复数:复数的概念与运算

2.高三年级数学知识点归纳笔记 篇二

1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

 2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

 3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

 4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

3.高三年级数学知识点归纳笔记 篇三

反三角函数:

 y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;

 y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;

 y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

 sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

 其他公式:

 三角函数其他公式

 arcsin(-x)=-arcsinx

 arccos(-x)=π-arccosx

 arctan(-x)=-arctanx

 arccot(-x)=π-arccotx

 arcsinx+arccosx=π/2=arctanx+arccotx

 sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

 当x∈[—π/2,π/2]时,有arcsin(sinx)=x

 当x∈[0,π],arccos(cosx)=x

 x∈(—π/2,π/2),arctan(tanx)=x

 x∈(0,π),arccot(cotx)=x

 x〉0,arctanx=π/2-arctan1/x,arccotx

4.高三年级数学知识点归纳笔记 篇四

一、充分条件和必要条件

 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

 二、充分条件、必要条件的常用判断法

 1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

 3.集合法

 在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

 若A?B,则p是q的充分条件。

 若A?B,则p是q的必要条件。

 若A=B,则p是q的充要条件。

 若A?B,且B?A,则p是q的既不充分也不必要条件。

 三、知识扩展

 1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

 (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

 (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

 (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

5.高三年级数学知识点归纳笔记 篇五

直线、平面、简单多面体

 1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

 2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.

 3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

 4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

 如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

 如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.

 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体

 6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

 正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.

 7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

6.高三年级数学知识点归纳笔记 篇六

直线和圆

 1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式(为直线的方向向量).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况

 2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点

 直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.

 在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

 3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

 4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、解.

 5.圆的方程:最简方程;标准方程;

 6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

 如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.

 如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离).

 7.曲线与的交点坐标方程组的解;

 过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

高三文科生在复习数学科目时,首先需要掌握数学公式。为了帮助高考考生掌握数学公式,下面我为高三文科生整理数学公式,希望对大家有所帮助!

高三文科数学公式

 一、对数函数

 log.a(MN)=logaM+logN

 loga(M/N)=logaM-logaN

 logaM^n=nlogaM(n=R)

 logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

 二、简单几何体的面积与体积

 S直棱柱侧=c*h(底面周长乘以高)

 S正棱椎侧=1/2*c*h?(底面的周长和斜高的一半)

 设正棱台上、下底面的周长分别为c?,c,斜高为h?,S=1/2*(c+c?)*h

 S圆柱侧=c*l

 S圆台侧=1/2*(c+c?)*l=兀*(r+r?)*l

 S圆锥侧=1/2*c*l=兀*r*l

 S球=4*兀*R^3

 V柱体=S*h

 V锥体=(1/3)*S*h

 V球=(4/3)*兀*R^3

 三、两直线的位置关系及距离公式

 (1)数轴上两点间的距离公式|AB|=|x2-x1|

 (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

 |AB|=sqr[(x2-x1)^2+(y2-y1)^2]

 (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

 (A^2+B^2)

 (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

 C2|/sqr(A^2+B^2)

 同角三角函数的基本关系及诱导公式

 sin(2*k*兀+a)=sin(a)

 cos(2*k*兀+a)=cosa

 tan(2*兀+a)=tana

 sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

 sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

 sin(兀+a)=-sina

 sin(兀-a)=sina

 cos(兀+a)=-cosa

 cos(兀-a)=-cosa

 tan(兀+a)=tana

 四、二倍角公式及其变形使用

 1、二倍角公式

 sin2a=2*sina*cosa

 cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

 tan2a=(2*tana)/[1-(tana)^2]

 2、二倍角公式的变形

 (cosa)^2=(1+cos2a)/2

 (sina)^2=(1-cos2a)/2

 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

 五、正弦定理和余弦定理

 正弦定理:

 a/sinA=b/sinB=c/sinC

 余弦定理:

 a^2=b^2+c^2-2bccosA

 b^2=a^2+c^2-2accosB

 c^2=a^2+b^2-2abcosC

 cosA=(b^2+c^2-a^2)/2bc

 cosB=(a^2+c^2-b^2)/2ac

 cosC=(a^2+b^2-c^2)/2ab

 tan(兀-a)=-tana

 sin(兀/2+a)=cosa

 sin(兀/2-a)=cosa

 cos(兀/2+a)=-sina

 cos(兀/2-a)=sina

 tan(兀/2+a)=-cota

 tan(兀/2-a)=cota

 (sina)^2+(cosa)^2=1

 sina/cosa=tana

 两角和与差的余弦公式

 cos(a-b)=cosa*cosb+sina*sinb

 cos(a-b)=cosa*cosb-sina*sinb

 两角和与差的正弦公式

 sin(a+b)=sina*cosb+cosa*sinb

 sin(a-b)=sina*cosb-cosa*sinb

 两角和与差的正切公式

 tan(a+b)=(tana+tanb)/(1-tana*tanb)

 tan(a-b)=(tana-tanb)/(1+tana*tanb)

高中数学知识点速记口诀

 1.《集合与函数》

 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

 2.《三角函数》

 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

 3.《不等式》

 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

 证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。

 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

 4.《数列》

 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

 5.《复数》

 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

 6.《排列、组合、二项式定理》

 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

 7.《立体几何》

 点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

 8.《平面解析几何》

 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

 笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。

 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三文科 数学 学习方法

 一:加深理解

 对数学课本里的概念要重新的认识,进一步加深对公式,定理的理解和掌握,认真看书,多练习,全面掌握,结合所有资料,提高解题的能力和更深知识的理解。

 二:认真做笔记

 上课时,一定要认真听,做笔记。听课不只是要听而已,还在积极的思考老师提出的问题,想想如何解决这个问题,应该要用什么方法,什么公式等等。老师上课时讲的,都会有一些的解题方法和思路,还有平时都会出错的问题,如何去解决,判断。所以上课做好笔记是必须的。

 三:反复练习

文章标签: # 直线 # 不等式 # 公式