您现在的位置是: 首页 > 分数线 分数线

高考数学数列大题第一问多少分_高考数学数列大题

tamoadmin 2024-05-15 人已围观

简介1.全国卷高考数学的大题是什么的结构。 就是每个题的范围。这是一年的高考题吧思路很简单就是利用三角形的几何、也可以说是角度的关系求出An横坐标的关系第二问可以从第一步归纳出也可以设an再用几何关系求啊a(n+1)将a(n+1)用an来表示第一问已经求出a1 了就可以得出通项公式了详细解答应该可以在以前的高考试题汇编的最后几道题有应该 五年高考三年模拟 上有不过照着思路去想应该就可以做出来的 不

1.全国卷高考数学的大题是什么的结构。 就是每个题的范围。

高考数学数列大题第一问多少分_高考数学数列大题

这是一年的高考题吧

思路很简单

就是利用三角形的几何、也可以说是角度的关系

求出An横坐标的关系

第二问可以从第一步归纳出

也可以设an再用几何关系求啊a(n+1)

将a(n+1)用an来表示

第一问已经求出a1 了

就可以得出通项公式了

详细解答应该可以在以前的高考试题汇编的最后几道题有

应该 五年高考三年模拟 上有

不过照着思路去想

应该就可以做出来的 不会太难的

我记得以前第我一次没想出来

几天后再去想才弄出来的

加油哦!

相信自己

全国卷高考数学的大题是什么的结构。 就是每个题的范围。

2011年普通高等等学校招生全国统一模拟考试(湖南卷)

数学(理工农医类)

一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若 a<0, >1,则 (D)

A.a>1,b>0 B.a>1,b<0 C. 0<a<1, b>0 D. 0<a<1, b<0

2.对于非0向时a,b,“a//b”的确良 (A)

A.充分不必要条件 B. 必要不充分条件

C.充分必要条件 D. 既不充分也不必要条件

3.将函数y=sinx的图象向左平移 0 <2 的单位后,得到函数y=sin 的图象,则 等于 (D)

A. B. C. D.

4.如图1,当参数 时,连续函数 的图像分别对应曲线 和 , 则 [ B]

A B

C D

5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 w.w.w.k.s.5.u.c.o.m [ C]

A 85 B 56 C 49 D 28

6. 已知D是由不等式组 ,所确定的平面区域,则圆 在区域D内

的弧长为 [ B]

A B C D

7.正方体ABCD— 的棱上到异面直线AB,C 的距离相等的点的个数为(C)

A.2 B.3 C. 4 D. 5 w.w.w.k.s.5.u.c.o.m

8.设函数 在( ,+ )内有定义。对于给定的正数K,定义函数

取函数 = 。若对任意的 ,恒有 = ,则w.w.w.k.s.5.u.c.o.m

A.K的最大值为2 B. K的最小值为2

C.K的最大值为1 D. K的最小值为1 D

二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上

9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__

10.在 的展开式中, 的系数为___7__(用数字作答)

11、若x∈(0, )则2tanx+tan( -x)的最小值为2 . w.w.w.k.s.5.u.c.o.m

12、已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为

13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为 ,则总体中的个数数位 50 。

14、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则w.w.w.k.s.5.u.c.o.m

(1)球心到平面ABC的距离为 12 ;

(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3

15、将正⊿ABC分割成 ( ≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n+1)(n+2)

三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

在 ,已知 ,求角A,B,C的大小。

解:设

由 得 ,所以

又 因此 w.w.w.k.s.5.u.c.o.m

由 得 ,于是

所以 , ,因此

,既

由A= 知 ,所以 , ,从而

或 ,既 或 故

或 。

17.(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的. 、 、 ,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m

(I)求他们选择的项目所属类别互不相同的概率;

(II)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 , , ,i=1,2,3.由题意知 相互独立, 相互独立, 相互独立, , , (i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P( )=,P( )= ,P( )=

(1) 他们选择的项目所属类别互不相同的概率

P=3!P( )=6P( )P( )P( )=6 =

(2) 解法1 设3名工人中选择的项目属于民生工程的人数为 ,由己已知, -B(3, ),且 =3 。

所以P( =0)=P( =3)= = ,

P( =1)=P( =2)= = w.w.w.k.s.5.u.c.o.m

P( =2)=P( =1)= =

P( =3)=P( =0)= =

故 的分布是

0 1 2 3

P

的数学期望E =0 +1 +2 +3 =2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件 ,

i=1,2,3 ,由此已知, ?D, 相互独立,且

P( )-( , )= P( )+P( )= + =

所以 -- ,既 , w.w.w.k.s.5.u.c.o.m

故 的分布列是

1 2 3

18.(本小题满分12分)

如图4,在正三棱柱 中,

D是 的中点,点E在 上,且 。

(I) 证明平面 平面

(II) 求直线 和平面 所成角的正弦值。w.w.w.k.s.5.u.c.o.m

解 (I) 如图所示,由正三棱柱 的性质知 平面

又DE 平面A B C ,所以DE AA .

而DE AE。AA AE=A 所以DE 平面AC C A ,又DE 平面ADE,故平面ADE 平面AC C A 。

(2)解法1 如图所示,设F使AB的中点,连接DF、DC、CF,由正三棱柱ABC- A B C 的性质及D是A B的中点知A B C D, A B DF w.w.w.k.s.5.u.c.o.m

又C D DF=D,所以A B 平面C DF,

而AB∥A B,所以

AB 平面C DF,又AB 平面ABC,故

平面AB C 平面C DF。

过点D做DH垂直C F于点H,则DH 平面AB C 。w.w.w.k.s.5.u.c.o.m

连接AH,则 HAD是AD和平面ABC 所成的角。

由已知AB= A A ,不妨设A A = ,则AB=2,DF= ,D C = ,

C F= ,AD= = ,DH= = — ,

所以 sin HAD= = 。

即直线AD和平面AB C 所成角的正弦值为 。

解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设

A A = ,则AB=2,相关各点的坐标分别是

A(0,-1,0), B( ,0,0), C (0,1, ), D( ,- , )。

易知 =( ,1,0), =(0,2, ), =( ,- , )w.w.w.k.s.5.u.c.o.m

设平面ABC 的法向量为n=(x,y,z),则有

解得x=- y, z=- ,

故可取n=(1,- , )。

所以, (n? )= = = 。

由此即知,直线AD和平面AB C 所成角的正弦值为 。

19.(本小题满分13分)

某地建一座桥,两端的桥墩已建好,这两墩相距 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为 米的相邻两墩之间的桥面工程费用为 万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为 万元。

(Ⅰ)试写出 关于 的函数关系式;

(Ⅱ)当 =640米时,需新建多少个桥墩才能使 最小?

解 (Ⅰ)设需要新建 个桥墩,

所以

(Ⅱ) 由(Ⅰ)知,

令 ,得 ,所以 =64

当0< <64时 <0, 在区间(0,64)内为减函数;w.w.w.k.s.5.u.c.o.m

当 时, >0. 在区间(64,640)内为增函数,

所以 在 =64处取得最小值,此时,

故需新建9个桥墩才能使 最小。

20(本小题满分13分)

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和w.w.w.k.s.5.u.c.o.m

(Ⅰ)求点P的轨迹C;

(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。

解(Ⅰ)设点P的坐标为(x,y),则 3︳x-2︳

由题设

当x>2时,由①得

化简得

当 时 由①得

化简得

故点P的轨迹C是椭圆 在直线x=2的右侧部分与抛物线 在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1

(Ⅱ)如图2所示,易知直线x=2与 , 的交点都是A(2, ),

B(2, ),直线AF,BF的斜率分别为 = , = .

当点P在 上时,由②知

. ④

当点P在 上时,由③知w.w.w.k.s.5.u.c.o.m

若直线l的斜率k存在,则直线l的方程为

(i)当k≤ ,或k≥ ,即k≤-2 时,直线I与轨迹C的两个交点M( , ),N( , )都在C 上,此时由④知

∣MF∣= 6 - ∣NF∣= 6 - w.w.w.k.s.5.u.c.o.m

从而∣MN∣= ∣MF∣+ ∣NF∣= (6 - )+ (6 - )=12 - ( + )

由 得 则 , 是这个方程的两根,所以 + = *∣MN∣=12 - ( + )=12 -

因为当

w.w.w.k.s.5.u.c.o.m

当且仅当 时,等号成立。

(2)当 时,直线L与轨迹C的两个交点 分别在 上,不妨设点 在 上,点 上,则④⑤知,

设直线AF与椭圆 的另一交点为E

所以 。而点A,E都在 上,且

有(1)知 w.w.w.k.s.5.u.c.o.m

若直线 的斜率不存在,则 = =3,此时

综上所述,线段MN长度的最大值为

21.(本小题满分13分)

对于数列 若存在常数M>0,对任意的 ,恒有

w.w.w.k.s.5.u.c.o.m

则称数列 为B-数列

(1) 首项为1,公比为 的等比数列是否为B-数列?请说明理由;

请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题

判断所给命题的真假,并证明你的结论;

(2) 设 是数列 的前 项和,给出下列两组论断;

A组:①数列 是B-数列 ②数列 不是B-数列

B组:③数列 是B-数列 ④数列 不是B-数列

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。

判断所给命题的真假,并证明你的结论;

(3) 若数列 都是 数列,证明:数列 也是 数列。

解(1)设满足题设的等比数列为 ,则 ,于是

因此| - |+| - |+…+| - |=

因为 所以 即w.w.w.k.s.5.u.c.o.m

故首项为1,公比为 的等比数列是B-数列。

(2)命题1:若数列 是B-数列,则数列 是B-数列

次命题为假命题。

事实上,设 ,易知数列 是B-数列,但

由 的任意性知,数列 是B-数列此命题为。

命题2:若数列 是B-数列,则数列 是B-数列

此命题为真命题

事实上,因为数列 是B-数列,所以存在正数M,对任意的 有

w.w.w.k.s.5.u.c.o.m

即 。于是

所以数列 是B-数列。

(III)若数列 { }是 数列,则存在正数 ,对任意的 有

注意到

同理: w.w.w.k.s.5.u.c.o.m

记 ,则有

因此

+

故数列 是 数列w.w.w.k.s.5.u.c.o.m

高考数学满分150分,选择题12道,填空题4道,每题5分,共80分,剩余的部分为几道大题,共70分,所以大题在整个卷子中占了相当大的比例,大题考察的范围分别是:

1.数列或者三角函数

2.立体几何

3.概率统计

4.圆锥曲线

5.导数

6.选修题(参数方程和不等式)

一、数列

这类型题目明显感觉就比较难了,但同时掌握了套路和方法,这部分题也没什么难的。

数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法 倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度,然后就是求前n项和,这里一共有四种方法,倒序相加法、错位相减法、分组求和法以及裂项相消法,只要求前n项和只要考虑以上方法即可,多数情况下考察错位相减法,同时也是大家失分项,所以在这里一定要强加练习,规范书写步骤。

二、三角函数

对于三角函数的学习关键是熟记公式及灵活的运用公式,其实高中数学也是一门记忆学科,数学更需要背诵,很多知识、解法、定理往往更需要我们花时间背下来,很多时候,解题过程中被卡住,并不是因为想不到思路,而是因为简单的公式或者定理掌握不好,甚至是记反了,当然同时也是对题型的陌生和对解题方法的陌生。

对于三角函数的考法共有两种,分别是解三角形和三角函数本身,大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用,之所以解三角函数考的概率低是因为出现这样的题目简直太简单了,根本就是送分题,关于解三角函数,我们学习了三个公式,正弦定理、余弦定理和面积公式,所以除去求面积的话一定要用的面积公式之外,剩余的公式如果不能迅速判断,就都试一下,只要推出来要求的结果就可以了。另外一种就是考察三角函数本身,这样的题的套路一般都是给定一个相对较复杂的式子,然后问这个函数的定义域值域周期频率单调性等问题,解决方法就是首先利用和差倍半公式对原始式子进行化简,化简成一般式然后求解需要求的。所以归根结底还是要熟记公式。

三、概率统计

以理科数学为例,考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法,这样听起来感觉内容多而杂,但其实只要掌握了基本知识,再加上例题的引导,后期各做一道练习题加以巩固,在高考中概率统计拿满分不是什么难事。但是简单的同时更加要求我们的仔细严谨程度,切记不要出现忘平方、忘开根号等低级错误。

四、立体几何

这个题相对于前面的给分题难度稍微大一些,可能会卡住一部分人,这道题有两到三问,前面问的某条线的大小或者证明某个线或面与另外一个线或面平行或垂直,最后一问是求二面角,这类题解题方法有两种,传统法和向量法,各有利弊。向量法可以说说任何情况下都可以使用,没有任何技术含量,肯定能解出正确答案,但是计算量大而且容易出错,应用向量法,首先建立空间直角坐标系,然后根据已知条件可以用向量表示每条直线,最后利用向量的知识求解题目,传统法求解则是同样要求我们熟练掌握各种性质定理和判定定理,在立体几何这一部分还有一个关键的要点,就是书写格式,这也是很多同学在平时考试结束后有这样的疑问“为什么要扣我这儿的分,我都证出来了······”之类的话,就是因为我们平时不注重书写步骤丢掉了很多不该丢掉的分数,在这一部分的推断题中,一定要注重条件和结论,几个结论推出来的一定切记缺一不可,否则即使之后结果得证也不会拿到全分。

五、圆锥曲线

仔细观察高考卷会发现圆锥曲线也是有一定的套路的,一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的,即,设直线,然后将直线方程带入圆锥曲线,得一个有关x的二次方程,分析判别式,利用韦达定理的结果求解待求量,在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。

六、导数和函数

导数与函数的题型大体分为三类:

1.关于单调性、最值、极值的考察

2.证明不等式

3.函数中含有字母,分类讨论字母的取值范围

七、参数方程

这一部分题目可以说成是送分题,这儿就不过多阐述了,唯一的方法就是考前狂刷一下历年高考题,这样就算拿满分也不是什么难事。

文章标签: # 数列 # s.5 # 平面